A179198 Matrix log of triangle A030528, where A030528(n,k) = C(k,n-k).
0, 1, 0, -2, 2, 0, 9, -4, 3, 0, -64, 18, -6, 4, 0, 620, -128, 27, -8, 5, 0, -7536, 1240, -192, 36, -10, 6, 0, 109032, -15072, 1860, -256, 45, -12, 7, 0, -1809984, 218064, -22608, 2480, -320, 54, -14, 8, 0, 33562944, -3619968, 327096, -30144, 3100, -384, 63, -16
Offset: 0
Keywords
Examples
Triangle L begins: 0; 1,0; -2,2,0; 9,-4,3,0; -64,18,-6,4,0; 620,-128,27,-8,5,0; -7536,1240,-192,36,-10,6,0; 109032,-15072,1860,-256,45,-12,7,0; -1809984,218064,-22608,2480,-320,54,-14,8,0; 33562944,-3619968,327096,-30144,3100,-384,63,-16,9,0; -681799680,67125888,-5429952,436128,-37680,3720,-448,72,-18,10,0; 14980204800,-1363599360,100688832,-7239936,545160,-45216,4340,-512,81,-20,11,0; ... where column_k = (k+1)*column_0: L(n,k) = (k+1)*L(n-k,0).
Programs
Formula
L(n,k) = (k+1)*L(n-k,0).
E.g.f. of column 0 satisfies: G(x) = (1+x)/(1+2*x)*G(x+x^2); more formulas given in A179199.