A179201 E.g.f. equals the imaginary part of the i-th iteration of (x + x^2), where i=sqrt(-1).
0, 0, 2, -6, 12, 200, -6240, 139440, -2869440, 53386560, -708048000, -6667689600, 1162101600000, -68789252563200, 3158414682259200, -118988867559744000, 3123174474201600000, 17680394964750336000, -10490102782572441600000
Offset: 0
Keywords
Examples
E.g.f: G(x) = 2*x^2/2! - 6*x^3/3! + 12*x^4/4! + 200*x^5/5! +... The e.g.f. of A179200, F(x), begins: F(x) = x - 6*x^3/3! + 60*x^4/4! - 600*x^5/5! + 5880*x^6/6! - 38640*x^7/7! - 624960*x^8/8! +... The i-th iteration of (x + x^2) = H(x) = F(x) + i*G(x), begins: H(x) = x + i*x^2 - (1 + i)*x^3 + (5 + i)*x^4/2 - (15 - 5*i)*x^5/3 + (49 - 52*i)*x^6/6 - (23 - 83*i)*x^7/3 - (93 + 427*i)*x^8/6 + (15652 + 18537*i)*x^9/126 - (61567 + 24585*i)*x^10/126 + (369519 - 42094*i)*x^11/252 - (1743963 - 1222750*i)*x^12/504 + ... where H(F(x) - i*G(x)) = x.
Programs
-
PARI
{a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(c,r-c))),L=sum(k=1,#M,-(M^0-M)^k/k),N=sum(k=0,#L,(I*L)^k/k!));if(n<1,0,imag(n!*N[n,1]))}
Formula
E.g.f.: G(x) satisfies:
. G(x) = sqrt( F(x) + F(x)^2 - F(x+x^2) )
. F(x) = (G(x+x^2)/G(x) - 1)/2
where F(x) is the e.g.f. of A179200.
Comments