cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179242 Numbers that have two terms in their Zeckendorf representation.

Original entry on oeis.org

4, 6, 7, 9, 10, 11, 14, 15, 16, 18, 22, 23, 24, 26, 29, 35, 36, 37, 39, 42, 47, 56, 57, 58, 60, 63, 68, 76, 90, 91, 92, 94, 97, 102, 110, 123, 145, 146, 147, 149, 152, 157, 165, 178, 199, 234, 235, 236, 238, 241, 246, 254, 267, 288, 322, 378, 379, 380, 382, 385, 390
Offset: 1

Views

Author

Emeric Deutsch, Jul 05 2010

Keywords

Comments

A007895(a(n)) = 2. - Reinhard Zumkeller, Mar 10 2013

Examples

			4 = 1+3;
6 = 1+5;
7 = 2+5;
9 = 1+8;
10 = 2+8;
		

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a179242 n = a179242_list !! (n-1)
    a179242_list = concatMap h $ drop 3 $ inits $ drop 2 a000045_list where
       h is = reverse $ map (+ f) fs where
              (f:_:fs) = reverse is
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i; for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(5)-1 to 400 do if B(i) = 2 then Q := `union`(Q, {i}) else end if end do: Q;
  • Mathematica
    f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); z[n_] := If[n == 0, 0, r = n; s = {}; fr = f[n]; While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]; Select[ Range[400], Length[z[#]] == 2 &] (* Jean-François Alcover, Sep 27 2011 *)
    zeck = DigitCount[Select[Range[5000], BitAnd[#, 2*#] == 0&], 2, 1];
    Position[zeck, 2] // Flatten (* Jean-François Alcover, Jan 25 2018 *)
  • Python
    from math import comb, isqrt
    from sympy import fibonacci
    def A179242(n): return fibonacci((m:=isqrt(n<<3)+1>>1)+3)+fibonacci(n+1-comb(m, 2)) # Chai Wah Wu, Apr 09 2025