cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179243 Numbers that have three terms in their Zeckendorf representation.

Original entry on oeis.org

12, 17, 19, 20, 25, 27, 28, 30, 31, 32, 38, 40, 41, 43, 44, 45, 48, 49, 50, 52, 59, 61, 62, 64, 65, 66, 69, 70, 71, 73, 77, 78, 79, 81, 84, 93, 95, 96, 98, 99, 100, 103, 104, 105, 107, 111, 112, 113, 115, 118, 124, 125, 126, 128, 131, 136, 148, 150, 151, 153, 154, 155
Offset: 1

Views

Author

Emeric Deutsch, Jul 05 2010

Keywords

Examples

			12 = 1+3+8;
17 = 1+3+13;
19 = 1+5+13;
20 = 2+5+13;
25 = 21+3+1;
		

Crossrefs

Programs

  • Haskell
    a179243 n = a179243_list !! (n-1)
    a179243_list = filter ((== 3) . a007895) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(7)-1 to 160 do if B(i) = 3 then Q := `union`(Q, {i}) else end if end do: Q
  • Mathematica
    zeck = DigitCount[Select[Range[2000], BitAnd[#, 2*#] == 0 &], 2, 1];
    Position[zeck, 3] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
  • Python
    from math import comb, isqrt
    from sympy import fibonacci, integer_nthroot
    def A179243(n): return fibonacci(2+(r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(t:=(n>comb(m+2, 3)))+1, 3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)), 2))+fibonacci((a:=isqrt(s:=n-comb(m-(t^1)+2, 3)<<1))+((s<<2)>(a<<2)*(a+1)+1)+3)+fibonacci(m+t+5) # Chai Wah Wu, Apr 09 2025

Formula

A007895(a(n)) = 3. - Reinhard Zumkeller, Mar 10 2013