A179243 Numbers that have three terms in their Zeckendorf representation.
12, 17, 19, 20, 25, 27, 28, 30, 31, 32, 38, 40, 41, 43, 44, 45, 48, 49, 50, 52, 59, 61, 62, 64, 65, 66, 69, 70, 71, 73, 77, 78, 79, 81, 84, 93, 95, 96, 98, 99, 100, 103, 104, 105, 107, 111, 112, 113, 115, 118, 124, 125, 126, 128, 131, 136, 148, 150, 151, 153, 154, 155
Offset: 1
Examples
12 = 1+3+8; 17 = 1+3+13; 19 = 1+5+13; 20 = 2+5+13; 25 = 21+3+1;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179243 n = a179243_list !! (n-1) a179243_list = filter ((== 3) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(7)-1 to 160 do if B(i) = 3 then Q := `union`(Q, {i}) else end if end do: Q
-
Mathematica
zeck = DigitCount[Select[Range[2000], BitAnd[#, 2*#] == 0 &], 2, 1]; Position[zeck, 3] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
-
Python
from math import comb, isqrt from sympy import fibonacci, integer_nthroot def A179243(n): return fibonacci(2+(r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(t:=(n>comb(m+2, 3)))+1, 3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)), 2))+fibonacci((a:=isqrt(s:=n-comb(m-(t^1)+2, 3)<<1))+((s<<2)>(a<<2)*(a+1)+1)+3)+fibonacci(m+t+5) # Chai Wah Wu, Apr 09 2025
Formula
A007895(a(n)) = 3. - Reinhard Zumkeller, Mar 10 2013