A179247 Numbers that have 7 terms in their Zeckendorf representation.
609, 842, 931, 965, 978, 983, 985, 986, 1219, 1308, 1342, 1355, 1360, 1362, 1363, 1452, 1486, 1499, 1504, 1506, 1507, 1541, 1554, 1559, 1561, 1562, 1575, 1580, 1582, 1583, 1588, 1590, 1591, 1593, 1594, 1595, 1829, 1918, 1952, 1965, 1970, 1972, 1973
Offset: 1
Keywords
Examples
609 = 377+144+55+21+8+3+1; 842 = 610+144+55+21+8+3+1; 931 = 610+233+55+21+8+3+1; 965 = 610+233+89+21+8+3+1; 978 = 610+233+89+34+8+3+1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179247 n = a179247_list !! (n-1) a179247_list = filter ((== 7) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(15)-1 to 2100 do if B(i) = 7 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
zeck = DigitCount[Select[Range[4*10^4], BitAnd[#, 2*#] == 0 &], 2, 1]; Position[zeck, 7] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
Comments