A179250 Numbers that have 10 terms in their Zeckendorf representation.
10945, 15126, 16723, 17333, 17566, 17655, 17689, 17702, 17707, 17709, 17710, 21891, 23488, 24098, 24331, 24420, 24454, 24467, 24472, 24474, 24475, 26072, 26682, 26915, 27004, 27038, 27051, 27056, 27058, 27059, 27669, 27902, 27991
Offset: 1
Examples
10945=6765+2584+987+377+144+55+21+8+3+1; 15126=10946+2584+987+377+144+55+21+8+3+1; 16723=10946+4181+987+377+144+55+21+8+3+1;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179250 n = a179250_list !! (n-1) a179250_list = filter ((== 10) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(21)-1 to 28500 do if B(i) = 10 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
zeck = DigitCount[Select[Range[2*10^6], BitAnd[#, 2*#] == 0 &], 2, 1]; Position[zeck, 10] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
Comments