A179253 Numbers k that have 13 terms in their Zeckendorf representation.
196417, 271442, 300099, 311045, 315226, 316823, 317433, 317666, 317755, 317789, 317802, 317807, 317809, 317810, 392835, 421492, 432438, 436619, 438216, 438826, 439059, 439148, 439182, 439195, 439200, 439202, 439203, 467860, 478806, 482987
Offset: 1
Keywords
Examples
196417 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368 + 121393; 271442 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368 + 196418;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a179253 n = a179253_list !! (n-1) a179253_list = filter ((== 13) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): seq(add(fibonacci(2*k), k = 1 .. 13-m)+add(fibonacci(27-2*k+2), k = 1 .. m), m = 0 .. 13); # this program yields only the first 14 terms of the sequence From R. J. Mathar, Jul 23 2010: (Start) Lzto10 := proc(L) local i ; add( op(i,L)*combinat[fibonacci](i+1),i=1..nops(L) ) ; end proc: zbits := proc(numbits,toset,upbits) local L,hibi ; if 2*toset-1 > numbits then return ; end if; if toset = 0 then L := [(seq(0,i=1..numbits)),op(upbits)] ; Lzto10(L); print(%) ; else for hibi from toset-1 to numbits -1 do if toset = 1 then procname(hibi,toset-1,[1,seq(0,i=1..numbits-hibi-1),op(upbits)]) ; else procname(hibi-1,toset-1,[0,1,seq(0,i=1..numbits-hibi-1),op(upbits)]) ; end if; end do; end if; return ; end proc: ztot := 13 : for numbits from 2*ztot -1 to 50 do zbits(numbits-2,ztot-1,[0,1]) ; end do: (End)
-
Mathematica
Reap[For[m = 0; k = 1, k <= 10^8, k++, If[BitAnd[k, 2 k] == 0, m++; If[DigitCount[k, 2, 1] == 13, Print[m]; Sow[m]]]]][[2, 1]] (* Jean-François Alcover, Aug 20 2023 *)
Extensions
More terms from R. J. Mathar, Jul 23 2010
Comments