cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179277 A(x) = C(x) * C(x^2) * C(x^4) * C(x^8) *...; C = Catalan, A000108.

Original entry on oeis.org

1, 1, 3, 6, 19, 50, 158, 492, 1635, 5466, 18794, 65332, 230414, 820052, 2945436, 10654808, 38795523, 142045610, 522694866, 1931912036, 7169014298, 26698782108, 99756713732, 373839656616, 1404795235438, 5292114330180, 19982497509316, 75613566762440, 286689890422780
Offset: 0

Views

Author

Gary W. Adamson, Jul 07 2010

Keywords

Comments

Let the sequence = A(x) = (1 + x + 3x^2 + 6x^3 + 19x^4 + ...).
Then A(x)/A(x^2) = C(x) = (1 + x + 2x^2 + 5x^3 + 14x^4 + ...).

Examples

			The generating triangle = M:
      1;
      1;
      2,    1;
      5,    1;
     14,    2,   1;
     42,    5,   1;
    132,   14,   2,  1;
    429,   42,   5,  1;
   1430,  132,  14,  2, 1;
   4862,  429,  42,  5, 1;
  16796, 1430, 132, 14, 2, 1;
...
Then take powers of this matrix, obtaining a left-shifted vector considered as a sequence = A179277.
		

Crossrefs

Programs

  • Maple
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A179277 := proc(n) if n <= 1 then 1; else add( procname(l)*A000108(n-2*l),l=0..n/2) ; end if; end proc:
    seq(A179277(n),n=0..80) ; # R. J. Mathar, Jul 09 2010
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[a[k]*CatalanNumber[n - 2*k], {k, 0, n/2}]; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Nov 27 2024 *)

Formula

Let M = an infinite lower triangular matrix with A000108 in each column but shifted down twice from the previous column, for k>0. Lim_{n->inf.} M^n = A179277, the left shifted vector considered as a sequence: (1 + x + 3x^2 + ...)
a(n) = Sum_{l=0..n/2} a(l)*A000108(n-2*l). - R. J. Mathar, Jul 09 2010
a(n) ~ c * 4^n / n^(3/2), where c = 0.60708656891919662230305917688276343401320432830016456... - Vaclav Kotesovec, Nov 27 2024

Extensions

More terms from R. J. Mathar, Jul 09 2010