A179277 A(x) = C(x) * C(x^2) * C(x^4) * C(x^8) *...; C = Catalan, A000108.
1, 1, 3, 6, 19, 50, 158, 492, 1635, 5466, 18794, 65332, 230414, 820052, 2945436, 10654808, 38795523, 142045610, 522694866, 1931912036, 7169014298, 26698782108, 99756713732, 373839656616, 1404795235438, 5292114330180, 19982497509316, 75613566762440, 286689890422780
Offset: 0
Keywords
Examples
The generating triangle = M: 1; 1; 2, 1; 5, 1; 14, 2, 1; 42, 5, 1; 132, 14, 2, 1; 429, 42, 5, 1; 1430, 132, 14, 2, 1; 4862, 429, 42, 5, 1; 16796, 1430, 132, 14, 2, 1; ... Then take powers of this matrix, obtaining a left-shifted vector considered as a sequence = A179277.
Programs
-
Maple
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc: A179277 := proc(n) if n <= 1 then 1; else add( procname(l)*A000108(n-2*l),l=0..n/2) ; end if; end proc: seq(A179277(n),n=0..80) ; # R. J. Mathar, Jul 09 2010
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[a[k]*CatalanNumber[n - 2*k], {k, 0, n/2}]; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Nov 27 2024 *)
Formula
Let M = an infinite lower triangular matrix with A000108 in each column but shifted down twice from the previous column, for k>0. Lim_{n->inf.} M^n = A179277, the left shifted vector considered as a sequence: (1 + x + 3x^2 + ...)
a(n) = Sum_{l=0..n/2} a(l)*A000108(n-2*l). - R. J. Mathar, Jul 09 2010
a(n) ~ c * 4^n / n^(3/2), where c = 0.60708656891919662230305917688276343401320432830016456... - Vaclav Kotesovec, Nov 27 2024
Extensions
More terms from R. J. Mathar, Jul 09 2010
Comments