cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179285 Triangle T(n,k) read by rows, defined by: T(1,1)=1; n > 1 and k=1: T(n,1) = T(n-1,2) + T(n,2); k=2: T(n,2) = A000196(n-1); k > 2: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 0, 1, 1, 4, 2, 2, 0, 1, 1, 4, 2, 2, 1, 0, 1, 1, 4, 2, 0, 2, 1, 0, 1, 1, 4, 2, 2, 1, 1, 1, 0, 1, 1, 5, 3, 2, 0, 1, 1, 1, 0, 1, 1, 6, 3, 1, 1, 1, 0, 1, 1, 0, 1, 1, 6, 3, 3, 3, 0, 1, 0, 1, 1, 0, 1, 1, 6, 3, 2, 2, 2, 1, 0, 0, 1, 1, 0, 1, 1, 6, 3, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Mats Granvik, Jul 09 2010

Keywords

Comments

The second column, sequence A000196, is the initial condition for the recurrence in this triangle. See A051731, formula entered on Feb 16 2010 for the more pure form of this recurrence.

Examples

			Triangle begins:
  1;
  1, 1;
  2, 1, 1;
  2, 1, 1, 1;
  3, 2, 0, 1, 1;
  4, 2, 2, 0, 1, 1;
  4, 2, 2, 1, 0, 1, 1;
  4, 2, 0, 2, 1, 0, 1, 1;
  4, 2, 2, 1, 1, 1, 0, 1, 1;
  5, 3, 2, 0, 1, 1, 1, 0, 1, 1;
  6, 3, 1, 1, 1, 0, 1, 1, 0, 1, 1;
		

Crossrefs

Programs

  • Excel
    Using European dot comma style:
    =if(and(row()=1;column()=1);1;if(row()>=column();if(column()=1;indirect(address(row()-1;column()+1))+indirect(address(row();column()+1));if(column()=2;floor(((row()-1)^0,5);1);if(row()>=column();sum(indirect(address(row()-column()+1;column()-1;4)&":"&address(row()-1;column()-1;4);4))-sum(indirect(address(row()-column()+1;column();4)&":"&address(row()-1;column();4);4));0)));0))

Formula

T(1,1)=1; n > 1 and k=1: T(n,1) = T(n-1,2) + T(n,2); k=2: T(n,2) = A000196(n-1); k > 2: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).