A179178 The number of equal-sized equilateral triangles visible (when viewed from above) in successive Genealodrons formed from 2^n -1 same size equilateral triangles.
1, 3, 7, 14, 25, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301, 2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, 3480
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A179316.
Programs
-
Mathematica
CoefficientList[Series[x (1 + x^2 + x^3 + x^4 - 2 x^6 + x^7)/(1 - x)^3, {x, 0, 49}], x] (* Michael De Vlieger, Mar 26 2016 *)
-
PARI
Vec(x*(1+x^2+x^3+x^4-2*x^6+x^7)/(1-x)^3 + O(x^50)) \\ Colin Barker, Mar 26 2016
Formula
a(n) = A005449(n-1) for n>=6. - Andrew Howroyd, Mar 24 2016
From Colin Barker, Mar 26 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>5.
a(n) = (2-5*n+3*n^2)/2 for n>5.
G.f.: x*(1+x^2+x^3+x^4-2*x^6+x^7) / (1-x)^3.
(End)
Extensions
a(12)-a(40) from Andrew Howroyd, Mar 24 2016
Definition improved by Andrew Howroyd, Apr 16 2020
Comments