A179319 G.f.: WL(-x)*WU(x), where WL, WU are respectively the characteristic functions of the lower (A000201) and upper (A001950) Wythoff sequences.
1, -1, 1, -2, 1, 0, 1, 1, 0, 0, 1, -1, 1, 1, 1, 2, -1, 1, 1, 0, 1, -1, 1, 1, 0, 0, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 1, -3, 1, -1, 1, 0, 1, -1, 1, -2, 1, 0, 1, 1, 0, 0, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 1, -3, 1, -1, 2, -2, 1, -3, 1, -4, 1, -2, 1, -1, 2
Offset: 0
Keywords
Examples
WL(x) = 1 + x + x^3 + x^4 + x^6 + x^8 + x^9 + x^11 + x^12 +...+ x^[n*phi] + ... WU(x) = 1 + x^2 + x^5 + x^7 + x^10 + x^13 + x^15 + x^18 +...+ x^[n*(phi+1)] + ... G.f.: WL(-x)*WU(x) = 1 - x + x^2 - 2*x^3 + x^4 + x^6 + x^7 + x^10 - x^11 + x^12 + x^13 + x^14 + 2*x^15 - x^16 +...+ a(n)*x^n +... Positions of records for positive coefficients (A183555) in WL(-x)*WU(x) begin: 1: 0 2: 15 3: 159 4: 303 5: 2887 6: 5471 7: 51839 8: 98207 9: 930247 10: 1762287 ... Positions of records for negative coefficients (A183556) in WL(-x)*WU(x) begin: -1: 1 -2: 3 -3: 37 -4: 71 -5: 681 -6: 1291 -7: 12237 -8: 23183 -9: 219601 -10: 416019 ... Now compare the above positions to A059973: [1,1, 2,4, 9,17, 38,72, 161,305, 682,1292, 2889,5473, 12238,23184, 51841,98209, 219602,416020, 930249,1762289, ...].
Formula
It appears that the records for positive integers occur at positions A059973(4n+1)-2 and A059973(4n+2)-2, while the records for negative integers occur at positions A059973(4n-1)-1 and A059973(4n)-1;
that is, the records seem to obey the following rule:
* a(A059973(4n+1)-2) = 2n-1 for n>1,
* a(A059973(4n+2)-2) = 2n for n>=1,
* a(A059973(4n-1)-1) = -(2n-1) for n>=1,
* a(A059973(4n)-1) = -(2n) for n>=1;
Extensions
Formula, examples, and program added by Paul D. Hanna, Jan 07 2011
Comments