cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179409 The number of alive cells in Conway's Game of Life on the 8x8 toroidal grid, in a cyclic sequence of 48 patterns containing among other patterns, a "stairstep hexomino" and its mirror image, illustrated below.

Original entry on oeis.org

6, 6, 6, 8, 10, 12, 16, 18, 20, 26, 26, 28, 30, 22, 26, 16, 20, 18, 18, 20, 16, 20, 10, 8, 6, 6, 6, 8, 10, 12, 16, 18, 20, 26, 26, 28, 30, 22, 26, 16, 20, 18, 18, 20, 16, 20, 10, 8, 6, 6, 6, 8, 10, 12, 16, 18, 20, 26, 26, 28, 30, 22, 26, 16, 20, 18, 18, 20, 16, 20, 10, 8
Offset: 0

Views

Author

Antti Karttunen, Jul 27 2010

Keywords

Comments

Period 24. The sequence begins (from offset 0) with its lexicographically earliest rotation. All terms are even because the initial pattern has an even number of cells and because it has 180-degree rotational symmetry.
The mean value of terms in the whole period of 24 is 16.9167.

Examples

			The generations 0-3 of this cycle of patterns look as follows, thus a(0)=a(1)=a(2)=6 and a(3)=8.
. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .
. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .
. . o . . . . . | . . . . . . . . | . . o . . . . . | . . o o . . . .
. o . . o . . . | . o o o . . . . | . . o o . . . . | . . o . o . . .
. . o . . o . . | . . . o o o . . | . . . o o . . . | . . o . o . . .
. . . . o . . . | . . . . . . . . | . . . . o . . . | . . . o o . . .
. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .
. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .
(generation 0.) | (generation 1.) | (generation 2.) | (generation 3.)
..................................|stairstep hexomino................
generations 4-7 of this cycle of patterns look as follows, thus a(4)=10, a(5)=12, a(6)=16 and a(7)=18.
. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .
. . . . . . . . | . . . . . . . . | . . o . . . . . | . o o . . . . .
. . o o . . . . | . o o o . . . . | . o o o o . . . | . o o . o o . .
. o o . o . . . | . o . . o o . . | o . . . o o . . | o . . . o o . .
. . o . o o . . | . o o . . o . . | . o o . . . o . | . o o . . . o .
. . . o o . . . | . . . o o o . . | . . o o o o . . | . o o . o o . .
. . . . . . . . | . . . . . . . . | . . . . o . . . | . . . . o o . .
. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .
In generation 24 we obtain the initial pattern reflected over its central vertical axis, and for the generations 24--47 the patterns repeat the history of the first 24 generations, but reflected over its vertical axis, after which the whole cycle begins from the start again at the generation 48.
. . . . . . . . | . . . . . . . .
. . . . . . . . | . . . . . . . .
. . . . o . . . | . . . . . . . .
. . o . . o . . | . . . o o o . .
. o . . o . . . | . o o o . . . .
. . o . . . . . | . . . . . . . .
. . . . . . . . | . . . . . . . .
. . . . . . . . | . . . . . . . .
(generation 24) | (generation 25)
		

Crossrefs

Cf. also A179412 for a longer cyclic sequence of 132 patterns.
A179415 which traces the history of the same initial pattern on infinite square grid, differs from this one for the first time at n=14, where a(14)=26 while A179415(14)=32.