cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179422 E.g.f.: A(x) = G(G(x)) = x*G'(x) where G(x) is the g.f. of A179420.

Original entry on oeis.org

1, 4, 36, 528, 11000, 301680, 10379376, 433371008, 21434318496, 1232928216000, 81297809313600, 6074187611551488, 509351655073262976, 47554889211476564736, 4909859201019880800000, 557309205260654645145600
Offset: 1

Views

Author

Paul D. Hanna, Jul 28 2010

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
Let G(x) be the g.f. of A179420, then
. G(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...
. G(G(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2+sum(m=3,n-1,a(m)*x^m/(m*m!))+x*O(x^n));if(n<3,n!*polcoeff(A,n),n*n!*polcoeff(subst(A,x,A),n)/(n-2))}

Formula

a(n) = n*A179420(n) = n^2*A179421(n-1).
E.g.f. satisfies: x*A'(x)/A(x) = G(A(x))/G(x) where G(x) is the g.f. of A179420.