A179435 For positive n with prime decomposition n = Product_{j=1..m} (p_j^k_j) define a_n = Sum_{j=1..m} (p_j*k_j) and b_n = Sum_{j=1..m} (p_j^k_j). This sequence gives those n for which a_n and b_n are both prime and unequal.
40, 48, 54, 88, 108, 184, 250, 384, 424, 432, 448, 808, 864, 1048, 1216, 1384, 1528, 1575, 1680, 1792, 1864, 1890, 2104, 2184, 2457, 2925, 2944, 3080, 3120, 3328, 3510, 3696, 3712, 3915, 4125, 4158, 4288, 4504, 4744, 4950, 5224, 5488, 5632, 5928, 5940, 6240
Offset: 1
Keywords
Examples
a(1) = 40 = 2^3*5^1, with a = 11 and b = 13. a(2) = 48 = 2^4*3^1, with a = 11 and b = 19. Notice that a and b are both prime and not equal.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a:= proc(n) option remember; local an, bn, k, l; for k from 1 +`if`(n=1, 0, a(n-1)) do l:= ifactors(k)[2]; an:= add( i[1] * i[2], i=l); bn:= add( i[1] ^ i[2], i=l); if isprime(an) and isprime(bn) and an<>bn then break fi od; k end: seq(a(n), n=1..50); # Alois P. Heinz, Jan 20 2011
-
Mathematica
a[n_] := a[n] = Module[{an, bn, k, p, e}, For[k = 1 + If[n==1, 0, a[n-1]], True, k++, {p, e} = Transpose[FactorInteger[k]]; an = p.e; bn = Total[p^e]; If[PrimeQ[an] && PrimeQ[bn] && an != bn, Break[]]]; k]; Array[a, 50] (* Jean-François Alcover, Nov 20 2020 *)
Extensions
More terms from Alois P. Heinz, Jan 20 2011
Comments