A179454 Permutation trees of power n and height k.
1, 1, 1, 1, 1, 4, 1, 1, 14, 8, 1, 1, 51, 54, 13, 1, 1, 202, 365, 132, 19, 1, 1, 876, 2582, 1289, 265, 26, 1, 1, 4139, 19404, 12859, 3409, 473, 34, 1, 1, 21146, 155703, 134001, 43540, 7666, 779, 43, 1, 1, 115974, 1335278, 1471353, 569275, 120200, 15456, 1209, 53, 1
Offset: 0
Examples
As a (0,0)-based triangle with an additional column [1,0,0,0,...] at the left hand side: [ 1 ] [ 0, 1 ] [ 0, 1, 1 ] [ 0, 1, 4, 1 ] [ 0, 1, 14, 8, 1 ] [ 0, 1, 51, 54, 13, 1 ] [ 0, 1, 202, 365, 132, 19, 1 ] [ 0, 1, 876, 2582, 1289, 265, 26, 1 ] [ 0, 1, 4139, 19404, 12859, 3409, 473, 34, 1] -------------------------------------------- The height statistic over permutations, n=4. [1, 2, 3, 4] => 2; [1, 2, 4, 3] => 3; [1, 3, 2, 4] => 3; [1, 3, 4, 2] => 3; [1, 4, 2, 3] => 3; [1, 4, 3, 2] => 4; [2, 1, 3, 4] => 2; [2, 1, 4, 3] => 3; [2, 3, 1, 4] => 2; [2, 3, 4, 1] => 2; [2, 4, 1, 3] => 2; [2, 4, 3, 1] => 3; [3, 1, 2, 4] => 2; [3, 1, 4, 2] => 2; [3, 2, 1, 4] => 2; [3, 2, 4, 1] => 2; [3, 4, 1, 2] => 2; [3, 4, 2, 1] => 3; [4, 1, 2, 3] => 1; [4, 1, 3, 2] => 2; [4, 2, 1, 3] => 2; [4, 2, 3, 1] => 2; [4, 3, 1, 2] => 2; [4, 3, 2, 1] => 3; Gives row(4) = [0, 1, 14, 8, 1]. - _Peter Luschny_, Dec 09 2015
Links
- Alois P. Heinz, Rows n = 0..141, flattened
- Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker and Amanda Welch, Homomesies on permutations -- an analysis of maps and statistics in the FindStat database, arXiv:2206.13409 [math.CO], 2022-2023. (Def. 4.20 and Prop. 4.22.)
- FindStat - Combinatorial Statistic Finder, The height index of a permutation.
- Peter Luschny, Permutation Trees.
Programs
-
Maple
b:= proc(n, t, h) option remember; `if`(n=0 or h=0, 1, add( binomial(n-1, j-1)*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)) end: T:= (n, k)-> b(n, 1, k-1)-`if`(k<2, 0, b(n, 1, k-2)): seq(seq(T(n, k), k=min(n, 1)..n), n=0..12); # Alois P. Heinz, Aug 24 2017
-
Mathematica
b[n_, t_, h_] := b[n, t, h] = If[n == 0 || h == 0, 1, Sum[Binomial[n - 1, j - 1]*b[j - 1, 0, h - 1]*b[n - j, t, h], {j, 1, n}]]; T[n_, k_] := b[n, 1, k - 1] - If[k < 2, 0, b[n, 1, k - 2]]; Table[T[n, k], {n, 0, 12}, {k, Min[n, 1], n}] // Flatten (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
Sage
# uses[bell_transform from A264428] # Adds the column (1, 0, 0, 0, ..) to the left hand side and starts at n=0. def A179454_matrix(dim): a = [2]+[0]*(dim-1); b = [1]+[0]*(dim-1); L = [b,a] for k in range(dim): b = [sum((bell_transform(n, b))) for n in range(dim)] L.append(b) return matrix(ZZ, dim, lambda n, k: L[k+1][n]-L[k][n] if k<=n else 0) A179454_matrix(9) # Peter Luschny, Dec 07 2015
-
Sage
# Alternatively, based on FindStat statistic St000308: def statistic_000308(pi): if pi == []: return 0 h, i, branch, next = 0, len(pi), [0], pi[0] while true: while next < branch[len(branch)-1]: del(branch[len(branch)-1]) current = 0 while next > current: i -= 1 branch.append(next) h = max(h, len(branch)-1) if i == 0: return h current, next = next, pi[i] def A179454_row(n): L = [0]*(n+1) for p in Permutations(n): L[statistic_000308(p)] += 1 return L [A179454_row(n) for n in range(8)] # Peter Luschny, Dec 09 2015
Comments