cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179457 Triangle read by rows: number of permutation trees of power n and width <= k.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 12, 23, 24, 1, 27, 93, 119, 120, 1, 58, 360, 662, 719, 720, 1, 121, 1312, 3728, 4919, 5039, 5040, 1, 248, 4541, 20160, 35779, 40072, 40319, 40320, 1, 503, 15111, 103345, 259535, 347769, 362377, 362879, 362880
Offset: 1

Views

Author

Peter Luschny, Aug 11 2010

Keywords

Comments

Partial row sums of A008292 (triangle of Eulerian numbers).
Given by a very similar formula.
Special case: A179457(n,2) = A000325(n) for n > 1 (Grassmannian permutations).

Examples

			1;
1, 2;
1, 5, 6;
1, 12, 23, 24;
1, 27, 93, 119, 120;
1, 58, 360, 662, 719, 720;
1, 121, 1312, 3728, 4919, 5039, 5040;
1, 248, 4541, 20160, 35779, 40072, 40319, 40320;
1, 503, 15111, 103345, 259535, 347769, 362377, 362879, 362880;
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 533.

Crossrefs

Cf. A008292.
Row sums sequence is 1,3,12,... A001710(n+1) = (n+1)!/2. - Olivier Gérard, Aug 04 2012

Programs

  • Maple
    Eulerian:= (n,k)-> sum((-1)^j*(k-j+1)^n * binomial(n+1,j),j=0..k+1):
    s:=(j,n)-> sum(Eulerian(j,k-1), k=1..n):
    for i from 1 to 15 do print(seq(s(i,n),n=1..i)) od; # Gary Detlefs, Nov 18 2011
  • Mathematica
    Flatten[Table[Table[Sum[(-1)^j (k-j)^(n+1) Binomial[n+1, j], {j, 0, k}], {k, 1, n + 1}], {n, 0, 10}], 1] (* Olivier Gérard, Aug 04 2012 *)

Formula

T(n,k) = sum( ((-1)^j*(k-j)^(n+1))*binomial(n+1,j),j=0..k) - Olivier Gérard, Aug 04 2012