cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179467 G.f. satisfies: A(x) = exp( Sum_{n>=1} sigma(n)*A(x^n)*x^n/n ).

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 131, 351, 992, 2808, 8131, 23723, 70192, 209209, 629165, 1904391, 5801109, 17764063, 54663309, 168925259, 524064687, 1631511342, 5095440198, 15960070908, 50124189982, 157806721089, 497953049736, 1574573746276
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 47*x^5 + 131*x^6 +...
log(A(x)) = A(x)*x + 3*A(x^2)*x^2/2 + 4*A(x^3)*x^3/3 + 7*A(x^4)*x^4/4 +...
		

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A,x,x^m+x*O(x^n))*sigma(m)*x^m/m)));polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n<0,0,if(n==0,1,polcoeff(1/prod(m=1,n,prod(k=1,n\m+1,1-x^(k*m)+x*O(x^n))^a(m-1)),n)))}

Formula

G.f.: Sum_{n>=0} a(n)*x^n = Product_{n>=1} P(x^n)^a(n-1) where P(x) = Product_{k>=1} 1/(1-x^k) is the partition function.