cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179479 a(n) is the smallest prime q > a(n-1) such that, for the previous prime p and the following prime r, the fraction (q-p)/(r-q) has denominator 2, for odd n and 1 for even n (or 0, if such a prime does not exist).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 43, 53, 67, 71, 79, 97
Offset: 1

Views

Author

Vladimir Shevelev, Jan 08 2011

Keywords

Comments

Conjecture: a(n) > 0 for all n.
Since, as it is accepted in the OEIS, we consider the uncancelled fractions, then, by the condition, for even n, we have (r-q)|(q-p).

Examples

			If n=1, then denominator should be 2. Thus a(1)=3, since (3-2)/(5-3)=1/2. If n=2, then denominator should be 1. Thus a(2)=5, since (5-3)/(7-5)=1/1, etc.
		

Crossrefs