cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179480 Let m>k>0 be odd numbers and denote by the symbol "m<->k" the value A000265(m-k). Then the sequence m<->k, m<->(m<->k), m<->(m<->(m<->k)), ... is periodic; a(n) is the smallest period in the case m=2*n-1, k=1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 2, 1, 5, 2, 6, 5, 5, 7, 2, 1, 6, 9, 6, 3, 3, 6, 12, 10, 4, 13, 10, 3, 15, 15, 2, 1, 17, 10, 18, 2, 10, 14, 20, 13, 21, 2, 14, 4, 6, 4, 18, 11, 9, 25, 26, 4, 27, 9, 18, 5, 22, 4, 12, 27, 10, 25, 2, 1, 33, 6, 18, 15, 35, 22, 30, 3, 22, 37, 6, 12, 10, 13, 26
Offset: 2

Views

Author

Vladimir Shevelev, Jul 16 2010

Keywords

Comments

A dual sequence to A179382.
Let b = (2*n-1) and k = A003558(n-1). If a(n) is odd, b divides (2^k + 1); but if a(n) is even, b divides (2^k - 1). Examples: a(14) = 5, odd; with b = 27 and A003558(13) = 9. Then 27 divides (2^9 + 1) or 513 = 27 * 19. a(18) = 6, even. b = 35, with k= A003558(17) = 12. Then 35 divides (2^12 - 1). - Gary W. Adamson, Aug 20 2012.
Iff a(n) = n/2 or (n-1)/2, then 2*n - 1 is a prime with one coach and is in A216371. Examples: a(19) = 9, so 37 is in A216371. a(12) = 6, so 23 is in A216371. - _Gary W. Adamson, Sep 08 2012.

Examples

			If n=14, then m=27 and we have 27<->1=13, 27<->13=7, 27<->7=5, 27<->5=11, 27<->11=1. Thus a(14)=5.
		

Crossrefs

Programs

  • Maple
    Contribution from R. J. Mathar, Nov 04 2010: (Start)
    A179480aux := proc(x,y) local xtrack,xitr,xpos ; xtrack := [y] ; while true do xitr := A000265(x-op(-1,xtrack)) ; if not member(xitr, xtrack,'xpos') then xtrack := [op(xtrack),xitr] ; else return 1+nops(xtrack)-xpos ; end if; end do: end proc:
    A179480 := proc(n) A179480aux(2*n-1,1) ; end proc: seq(A179480(n),n=2..80) ; (End)
  • Mathematica
    oddres[n_] := n/2^IntegerExponent[n, 2];
    b[x_, y_] := Module[{xtrack = {y}, xitr}, While[True, xitr = oddres[x - Last@ xtrack]; If[FreeQ[xtrack, xitr], AppendTo[xtrack, xitr], Return[ Length[xtrack]]]]];
    a[n_] := b[2n-1, 1];
    a /@ Range[2, 80] (* Jean-François Alcover, Apr 13 2020, after R. J. Mathar *)

Extensions

Edited by N. J. A. Sloane, Jul 18 2010
More terms from R. J. Mathar, Nov 04 2010