cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A179591 Decimal expansion of the surface area of pentagonal cupola with edge length 1.

Original entry on oeis.org

1, 6, 5, 7, 9, 7, 4, 9, 7, 5, 2, 9, 8, 8, 1, 9, 7, 0, 4, 6, 0, 9, 4, 0, 4, 6, 3, 4, 4, 3, 6, 3, 2, 2, 4, 6, 1, 8, 1, 0, 2, 6, 3, 6, 0, 9, 6, 1, 1, 7, 6, 5, 5, 1, 8, 1, 8, 7, 4, 7, 4, 4, 0, 5, 7, 2, 7, 5, 9, 4, 3, 4, 8, 4, 5, 8, 2, 6, 9, 3, 5, 7, 3, 8, 2, 0, 3, 5, 8, 2, 7, 9, 0, 0, 1, 9, 1, 2, 0, 4, 8, 2, 6, 8, 1
Offset: 2

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			16.5797497529881970460940463443632246181026360961176551818747440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(20+Sqrt[10*(80+31*Sqrt[5]+Sqrt[2175+930*Sqrt[5]])])/4,200]]

Formula

Digits of (20+sqrt(10*(80+31*sqrt(5)+sqrt(2175+930*sqrt(5)))))/4.

A384283 Decimal expansion of the volume of a gyroelongated pentagonal cupola with unit edge.

Original entry on oeis.org

9, 0, 7, 3, 3, 3, 3, 1, 9, 3, 8, 8, 0, 1, 8, 7, 9, 9, 3, 1, 4, 9, 9, 8, 3, 9, 8, 1, 0, 1, 8, 1, 6, 2, 7, 2, 2, 1, 5, 3, 1, 3, 3, 9, 3, 0, 6, 0, 3, 6, 7, 3, 4, 9, 2, 1, 4, 7, 6, 4, 2, 4, 5, 8, 5, 0, 3, 7, 6, 6, 8, 7, 2, 0, 6, 1, 5, 5, 3, 5, 4, 0, 3, 6, 2, 6, 2, 2, 8, 0
Offset: 1

Views

Author

Paolo Xausa, May 26 2025

Keywords

Comments

The gyroelongated pentagonal cupola is Johnson solid J_24.

Examples

			9.07333319388018799314998398101816272215313393060...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[80] + 5*Sqrt[2*(Sqrt[650 + 290*Sqrt[5]] - Sqrt[5] - 1)])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J24", "Volume"], 10, 100]]
  • PARI
    (5 + 4*sqrt(5) + 5*sqrt(2*(sqrt(650 + 290*sqrt(5)) - sqrt(5) - 1)))/6 \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals (5 + 4*sqrt(5) + 5*sqrt(2*(sqrt(650 + 290*sqrt(5)) - sqrt(5) - 1)))/6 = (5 + A010532 + 5*sqrt(2*(sqrt(650 + 290*A002163) - A002163 - 1)))/6.
Equals the largest real root of 1679616*x^8 - 11197440*x^7 + 27060480*x^6 + 35769600*x^5 - 4456749600*x^4 - 10714248000*x^3 + 3828402000*x^2 + 13859430000*x + 5340175625.

A179638 Decimal expansion of the volume of gyroelongated square pyramid with edge length 1.

Original entry on oeis.org

1, 1, 9, 2, 7, 0, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 5, 5, 9, 0, 6, 0, 1, 9, 8, 4, 2, 8, 3, 7, 7, 2, 5, 1, 5, 8, 1, 5, 5, 2, 6, 2, 5, 5, 1, 8, 2, 8, 8, 6, 2, 0, 1, 5, 7, 0, 7, 7, 9, 3, 1, 4, 2, 1, 8, 8, 8, 2, 2, 7, 4, 7, 2, 4, 5, 5, 2, 5, 8, 3, 8, 6, 3, 0, 8, 2, 0, 7, 7, 0, 6, 7, 0, 0, 1, 8, 1, 1, 7, 7, 4, 7, 6, 3, 8
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated square pyramid: 9 vertices, 20 edges, and 13 faces.

Examples

			1.19270224223223255906019842837725158155262551828862015707793142188822...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(Sqrt[2]+2*Sqrt[4+3*Sqrt[2]])/6,200]]

Formula

Digits of (sqrt(2)+2 sqrt(4+3 sqrt(2)))/6.

A179593 Decimal expansion of the volume of pentagonal rotunda with edge length 1.

Original entry on oeis.org

6, 9, 1, 7, 7, 6, 2, 9, 6, 8, 1, 2, 4, 7, 0, 2, 0, 6, 9, 9, 1, 2, 9, 9, 6, 0, 3, 0, 7, 0, 2, 6, 4, 1, 3, 3, 3, 5, 4, 0, 8, 7, 6, 0, 0, 9, 4, 4, 9, 6, 6, 1, 4, 4, 2, 7, 1, 7, 1, 0, 4, 4, 3, 0, 9, 9, 8, 2, 3, 7, 9, 7, 7, 9, 8, 6, 8, 9, 0, 2, 7, 4, 1, 7, 0, 4, 2, 0, 4, 1, 1, 8, 6, 9, 9, 4, 1, 5, 5, 6, 2, 0, 6, 8, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			6.91776296812470206991299603070264133354087600944966144271710443099823...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/12,200]]

Formula

Digits of (45+17*sqrt(5))/12.

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A384285 Decimal expansion of the volume of a gyroelongated pentagonal rotunda with unit edge.

Original entry on oeis.org

1, 3, 6, 6, 7, 0, 5, 0, 8, 4, 3, 6, 7, 1, 6, 9, 6, 9, 3, 2, 1, 2, 3, 5, 3, 0, 8, 9, 9, 2, 3, 3, 2, 8, 6, 5, 6, 5, 4, 0, 0, 2, 6, 4, 3, 6, 6, 9, 7, 8, 9, 8, 4, 4, 5, 2, 0, 1, 7, 4, 8, 2, 0, 5, 9, 2, 2, 8, 3, 2, 4, 2, 3, 2, 9, 5, 6, 5, 7, 3, 8, 8, 1, 5, 9, 0, 1, 0, 0, 2
Offset: 2

Views

Author

Paolo Xausa, May 29 2025

Keywords

Comments

The gyroelongated pentagonal rotunda is Johnson solid J_25.

Examples

			13.667050843671696932123530899233286565400264...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(45 + 17*# + 10*Sqrt[2*(Sqrt[650 + 290*#] - # - 1)])/12 & [Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J25", "Volume"], 10, 100]]

Formula

Equals (45 + 17*sqrt(5) + 10*sqrt(2*(sqrt(650 + 290*sqrt(5)) - sqrt(5) - 1)))/12 = (45 + 17*A002163 + 10*sqrt(2*(sqrt(650 + 290*A002163) - A002163 - 1)))/12.
Equals the largest real root of 1679616*x^8 - 50388480*x^7 + 603262080*x^6 - 3520972800*x^5 + 5215460400*x^4 + 4128624000*x^3 - 8894943000*x^2 + 3881385000*x - 424924375.

A386464 Decimal expansion of the volume of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 7, 3, 6, 3, 7, 0, 9, 8, 7, 7, 7, 0, 4, 0, 7, 4, 6, 8, 5, 6, 1, 9, 1, 0, 0, 1, 2, 5, 1, 4, 1, 6, 7, 7, 1, 0, 1, 0, 0, 5, 8, 5, 5, 1, 1, 5, 4, 6, 6, 7, 2, 9, 2, 4, 9, 8, 1, 9, 0, 0, 2, 5, 5, 2, 8, 9, 6, 3, 8, 2, 0, 7, 7, 4, 9, 8, 8, 8, 2, 5, 4, 6, 4, 7, 5, 2, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			87.3637098777040746856191001251416771010058551...
		

Crossrefs

Cf. A386465 (surface area).

Programs

  • Mathematica
    First[RealDigits[505/12 + 81/4*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "Volume"], 10, 100]]

Formula

Equals 505/12 + 81*sqrt(5)/4 = 505/12 + 81*A204188.
Equals A377695 + A179590.
Equals the largest root of 36*x^2 - 3030*x - 10055.

A386466 Decimal expansion of the volume of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 9, 6, 8, 7, 7, 5, 5, 1, 9, 6, 0, 3, 7, 2, 6, 7, 8, 1, 6, 5, 5, 8, 5, 4, 9, 2, 3, 7, 6, 2, 9, 1, 9, 4, 5, 9, 1, 2, 9, 9, 6, 0, 0, 6, 8, 8, 5, 4, 1, 0, 7, 9, 7, 3, 2, 6, 6, 6, 2, 6, 7, 3, 8, 3, 1, 7, 0, 0, 6, 2, 6, 9, 4, 5, 9, 0, 7, 5, 2, 4, 7, 9, 4, 1, 8, 1, 6, 8, 0
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the volume of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			89.68775519603726781655854923762919459129960068854...
		

Crossrefs

Cf. A386543 (surface area).

Programs

  • Mathematica
    First[RealDigits[(515 + 251*Sqrt[5])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "Volume"], 10, 100]]

Formula

Equals (515 + 251*sqrt(5))/12 = (515 + 251*A002163)/12.
Equals A377695 + 2*A179590.
Equals the largest root of 36*x^2 - 3090*x - 12445.

A386544 Decimal expansion of the volume of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

9, 2, 0, 1, 1, 8, 0, 0, 5, 1, 4, 3, 7, 0, 4, 6, 0, 9, 4, 7, 4, 9, 7, 9, 9, 8, 3, 5, 0, 1, 1, 6, 7, 1, 2, 0, 8, 1, 5, 9, 3, 3, 4, 6, 2, 6, 1, 6, 1, 5, 4, 3, 0, 2, 1, 5, 5, 1, 3, 5, 3, 2, 2, 1, 3, 4, 4, 3, 7, 4, 3, 3, 1, 1, 6, 8, 2, 6, 2, 2, 4, 1, 2, 3, 6, 1, 1, 1, 0, 9
Offset: 2

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			92.01180051437046094749799835011671208159334626...
		

Crossrefs

Cf. A386545 (surface area).

Programs

  • Mathematica
    First[RealDigits[7/12*(75 + 37*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "Volume"], 10, 100]]

Formula

Equals (7/12)*(75 + 37*sqrt(5)) = (7/12)*(75 + 37*A002163).
Equals A377695 + 3*A179590.
Equals the largest root of 36*x^2 - 3150*x - 14945.

A386689 Decimal expansion of the volume of a diminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 9, 2, 9, 1, 2, 7, 8, 4, 6, 4, 1, 6, 4, 7, 7, 3, 9, 3, 4, 3, 4, 9, 2, 2, 9, 6, 8, 5, 2, 4, 8, 1, 5, 2, 7, 8, 5, 6, 3, 2, 2, 3, 1, 9, 0, 3, 1, 7, 0, 3, 9, 8, 1, 8, 5, 1, 0, 4, 7, 4, 1, 8, 7, 5, 3, 6, 1, 3, 5, 4, 9, 9, 7, 4, 0, 6, 9, 1, 0, 7, 6, 1, 3, 9, 6, 3, 9, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 29 2025

Keywords

Comments

The diminished rhombicosidodecahedron is Johnson solid J_76.
Also the volume of a paragyrate diminished rhombicosidodecahedron, a metagyrate diminished rhombicosidodecahedron and a bigyrate diminished rhombicosidodecahedron (Johnson solids J_77, J_78 and J_79, respectively) with unit edges.

Examples

			39.29127846416477393434922968524815278563223190317...
		

Crossrefs

Cf. A386690 (surface area).

Programs

  • Mathematica
    First[RealDigits[115/6 + 9*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J76", "Volume"], 10, 100]]

Formula

Equals 115/6 + 9*sqrt(5) = 115/6 + 9*A002163.
Equals A185093 - A179590.
Equals the largest root of 36*x^2 - 1380*x - 1355.
Showing 1-10 of 16 results. Next