A179600 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 2*x - 10*x^2 - 4*x^3).
1, 3, 16, 66, 304, 1332, 5968, 26472, 117952, 524496, 2334400, 10385568, 46213120, 205619520, 914912512, 4070872704, 18113348608, 80595074304, 358607125504, 1595618388480, 7099688329216, 31589989045248, 140559334936576
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,10,4).
Programs
-
Maple
with(LinearAlgebra): nmax:=24; m:=1; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,1,1,0,0,0,1,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
PARI
Vec((1+x)/(1 - 2*x - 10*x^2 - 4*x^3) + O(x^40)) \\ Jinyuan Wang, Mar 10 2020
Formula
G.f.: (1+x)/(1 - 2*x - 10*x^2 - 4*x^3).
a(n) = 2*a(n-1) + 10*a(n-2) + 4*a(n-3) with a(0)=1, a(1)=3 and a(2)=16.
a(n) = (4*(-1/2)^(-n) + (1+sqrt(6))*A^(-n-1) + (1-sqrt(6))*B^(-n-1))/20 with A = (-1+sqrt(6)/2) and B = (-1-sqrt(6)/2).
Comments