A179602 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 3*x - 7*x^2).
1, 5, 22, 101, 457, 2078, 9433, 42845, 194566, 883613, 4012801, 18223694, 82760689, 375847925, 1706868598, 7751541269, 35202703993, 159868900862, 726025630537, 3297159197645, 14973657006694, 68001085403597, 308818855257649
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3, 7).
Crossrefs
Cf. A126473 (side squares).
Programs
-
Maple
with(LinearAlgebra): nmax:=22; m:=2; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,1,1,0,1,0,0,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
Mathematica
CoefficientList[Series[(1+2x)/(1-3x-7x^2),{x,0,40}],x] (* or *) LinearRecurrence[ {3,7},{1,5},40] (* Harvey P. Dale, Mar 28 2013 *)
Formula
G.f.: (1+2*x)/(1 - 3*x - 7*x^2).
a(n) = 3*a(n-1) + 7*a(n-2) with a(0) = 1 and a(1) = 5.
a(n) = ((37+4*37^(1/2))*A^(-n-1) + (37-4*37^(1/2))*B^(-n-1))/259 with A = (-3+sqrt(37))/14 and B = (-3-sqrt(37))/14.
Comments