A179606 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 3*x - 5*x^2).
1, 4, 17, 71, 298, 1249, 5237, 21956, 92053, 385939, 1618082, 6783941, 28442233, 119246404, 499950377, 2096083151, 8788001338, 36844419769, 154473265997, 647641896836, 2715292020493, 11384085545659, 47728716739442
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1603
- Index entries for linear recurrences with constant coefficients, signature (3,5).
Programs
-
Maple
with(LinearAlgebra): nmax:=22; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [0,0,0,1,1,1,0,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
Mathematica
CoefficientList[Series[(1+x)/(1-3*x-5*x^2), {x, 0, 22}],x] (* or *) LinearRecurrence[{3,5,0},{1,4},23] (* Indranil Ghosh, Mar 05 2017 *)
-
PARI
print(Vec((1 + x)/(1- 3*x - 5*x^2) + O(x^23))); \\ Indranil Ghosh, Mar 05 2017
Formula
G.f.: (1+x)/(1 - 3*x - 5*x^2).
a(n) = 3*a(n-1) + 5*a(n-2) with a(0) = 1 and a(1) = 4.
a(n) = ((29 + 7*sqrt(29))*A^(-n-1) + (29-7*sqrt(29))*B^(-n-1))/290 with A = (-3+sqrt(29))/10 and B = (-3-sqrt(29))/10
Comments