cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015523 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 14, 57, 241, 1008, 4229, 17727, 74326, 311613, 1306469, 5477472, 22964761, 96281643, 403668734, 1692414417, 7095586921, 29748832848, 124724433149, 522917463687, 2192374556806, 9191710988853, 38537005750589
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 and 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
For n >= 1, the sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the side squares to A152187 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. 1/(1-3*x-k*x^2). Red king sequences that are members of this family are A007482 (k=2), A015521 (k=4), A015523 (k=5; this sequence), A083858 (k=6), A015524 (k=7) and A015525 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A049072 (k=-4), A057083 (k=-3), A000225 (k=-2), A001906 (k=-1), A000244 (k=0), A006190 (k=1), A030195 (k=3), A099012 (k=9), A015528 (k=10) and A015529 (k=11).
Inverse binomial transform of A052918 (with extra leading 0).
(End)
First differences in A197189. - Bruno Berselli, Oct 11 2011
Pisano period lengths: 1, 3, 4, 6, 4, 12, 3, 12, 12, 12, 120, 12, 12, 3, 4, 24, 288, 12, 72, 12, ... - R. J. Mathar, Aug 10 2012
This is the Lucas U(P=3, Q=-5) sequence, and hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 3 + 5/(3 + 5/(3 + 5/(3 + ... + 5/3))) with n 5's. - Greg Dresden, Oct 06 2019

Crossrefs

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Join[{a = 0, b = 1}, Table[c = 3 * b + 5 * a; a = b; b = c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    a[0] := 0; a[1] := 1; a[n_] := a[n] = 3a[n - 1] + 5a[n - 2]; Table[a[n], {n, 0, 49}] (* Alonso del Arte, Jan 16 2011 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x-5*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,3,-5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 5*a(n-2).
From Paul Barry, Jul 20 2004: (Start)
a(n) = ((3/2 + sqrt(29)/2)^n - (3/2 - sqrt(29)/2)^n)/sqrt(29).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*5^k*3^(n-2*k-1). (End)
G.f.: x/(1 - 3*x - 5*x^2). - R. J. Mathar, Nov 16 2007
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A072263(n) + a(n)*sqrt(29))/2.
Limit_{n->oo} A072263(n)/a(n) = sqrt(29). (End)
G.f.: G(0)*x/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
E.g.f.: 2*exp(3*x/2)*sinh(sqrt(29)*x/2)/sqrt(29). - Stefano Spezia, Oct 06 2019

A155116 a(n) = 3*a(n-1) + 3*a(n-2), n>2, a(0)=1, a(1)=2, a(2)=8.

Original entry on oeis.org

1, 2, 8, 30, 114, 432, 1638, 6210, 23544, 89262, 338418, 1283040, 4864374, 18442242, 69919848, 265086270, 1005018354, 3810313872, 14445996678, 54768931650, 207644784984, 787241149902, 2984657804658, 11315696863680, 42901064005014
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2009

Keywords

Comments

From Johannes W. Meijer, Aug 14 2010: (Start)
A berserker sequence, see A180140 and A180147. For the central square 16 A[5] vectors with decimal values between 3 and 384 lead to this sequence. These vectors lead for the corner squares to A123620 and for the side squares to A180142.
This sequence belongs to a family of sequences with GF(x)=(1-(2*k-1)*x-k*x^2)/(1-3*x+(k-4)*x^2). Berserker sequences that are members of this family are A000007 (k=2), A155116 (k=1; this sequence), A000302 (k=0), 6*A179606 (k=-1; with leading 1 added) and 2*A180141 (k=-2; n>=1 and a(0)=1). Some other members of this family are (-2)*A003688 (k=3; with leading 1 added), (-4)*A003946 (k=4; with leading 1 added), (-6)*A002878 (k=5; with leading 1 added) and (-8)*A033484 (k=6; with leading 1 added).
Inverse binomial transform of A101368 (without the first leading 1).
(End)

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)) with a(0)=1, a(1) = m-1, a(2) = m^2 -1: A155020 (m=2), this sequence (m=3), A155117 (m=4), A155119 (m=5), A155127 (m=6), A155130 (m=7), A155132 (m=8), A155144 (m=9), A155157 (m=10).

Programs

  • Magma
    m:=3; [1] cat [n le 2 select (m-1)*(m*n-(m-1)) else m*(Self(n-1) + Self(n-2)): n in [1..30]]; // G. C. Greubel, Mar 25 2021
    
  • Mathematica
    With[{m=3}, LinearRecurrence[{m, m}, {1, m-1, m^2-1}, 30]] (* G. C. Greubel, Mar 25 2021 *)
  • PARI
    Vec((1-x-x^2)/(1-3*x-3*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • Sage
    m=3; [1]+[-(m-1)*(sqrt(m)*i)^(n-2)*chebyshev_U(n, -sqrt(m)*i/2) for n in (1..30)] # G. C. Greubel, Mar 25 2021

Formula

G.f.: (1-x-x^2)/(1-3*x-3*x^2).
a(n) = 2*A125145(n-1), n>=1 .
a(n) = ( (2+4*A)*A^(-n-1) + (2+4*B)*B^(-n-1) )/21 with A=(-3+sqrt(21))/6 and B=(-3-sqrt(21))/6 for n>=1 with a(0)=1. [corrected by Johannes W. Meijer, Aug 12 2010]
Contribution from Johannes W. Meijer, Aug 14 2010: (Start)
a(n) = A123620(n)/2 for n>=1.
(End)
a(n) = (1/3)*[n=0] - 2*(sqrt(3)*i)^(n-2)*ChebyshevU(n, -sqrt(3)*i/2). - G. C. Greubel, Mar 25 2021

A179597 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 5*x + 2*x^2)/(1 - 2*x - 11*x^2 - 6*x^3).

Original entry on oeis.org

1, 7, 27, 137, 613, 2895, 13355, 62233, 288741, 1342175, 6233899, 28964169, 134554277, 625117807, 2904117675, 13491856889, 62679715045, 291194561919, 1352817130667, 6284852732713, 29197861274277, 135646005392399
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
For the central square the 512 red kings lead to 47 different red king sequences, see the cross-references for some examples.
The sequence above corresponds to four A[5] vectors with decimal [binary] values 367 [1,0,1,1,0,1,1,1,1], 463 [1,1,1,0,0,1,1,1,1], 487 [1,1,1,1,0,0,1,1,1] and 493 [1,1,1,1,0,1,1,0,1]. These vectors lead for the corner squares to A179596 and for the side squares to A126473.
This sequence belongs to a family of sequences with g.f. (1 + (k+2)*x + (2*k-4)*x^2)/(1 - 2*x - (k+8)*x^2 - (2*k)*x^3). Red king sequences that are members of this family are A179607 (k=0), A179605 (k=1), A179601 (k=2), A179597 (k=3; this sequence) and A086348 (k=4). Another member of this family is A179609 (k = -4).

Crossrefs

Red king sequences central square [numerical value A[5]]: A086348 [495], A179599 [239], A179597 [367], A179601 [335], A179603 [95], A154964 [31], A179605 [327], A179606 [27], A179611 [15], A179607 [325], A015521 [11], A007483 [2], A000012 [16], A000007 [0].

Programs

  • Maple
    with(LinearAlgebra): nmax:=21; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,1,1,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5], A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,11,6},{1,7,27},30] (* Harvey P. Dale, Mar 01 2015 *)

Formula

G.f.: (1 + 5*x + 2*x^2)/(1 - 2*x - 11*x^2 - 6*x^3).
a(n) = 2*a(n-1) + 11*a(n-2) + 6*a(n-3) with a(0) = 1, a(1) = 7 and a(2) = 27.
a(n) = 8*(-1/2)^(-n+1)/9 + ((7+11*sqrt(7))*A^(-n-1) + (7-11*sqrt(7))*B^(-n-1))/126 with A = (-2+sqrt(7))/3 and B = (-2-sqrt(7))/3.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n+1)*(A000244(n)/(A015530(n)*sqrt(7) - A108851(n))).

A180140 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1+x+x^2)/(1-3*x-5*x^2).

Original entry on oeis.org

1, 4, 18, 74, 312, 1306, 5478, 22964, 96282, 403666, 1692408, 7095554, 29748702, 124723876, 522915138, 2192364794, 9191670072, 38536834186, 161568852918, 677390729684, 2840016453642, 11907003009346, 49921091296248
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010, Jun 15 2013

Keywords

Comments

a(n) gives the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the four side and four corner (m = 1, 3, 7, 9) squares but on the center square (m = 5) it goes berserk and turns into a berserker. For this sequence, the berserker can move to three of the side squares and three of the corners from the center.
The berserker is one of the Lewis chessmen which were discovered in 1831 on the Isle of Lewis. They are carved from walrus ivory in Scandinavian style of the 12th century. The pawns look like decorated tombstones. The pieces have all human representations with facial expressions varying from gloom to anger. Some of the rooks show men biting their shield in the manner of berserkers. According to Hooper and Whyld none looks happy.
Let A be the adjacency matrix of the graph G, where V(G) = {v1, v2, v3, v4, v5, v6, v7, v8, v9}. Then the (m, k) entry of A^n is the number of different vm-vk walks of length n in G, see the Chartrand reference. In the adjacency matrix A, see the Maple program, the A[1], A[3], A[7] and A[9] vectors represent the rook moves on the corner squares, the A[2], A[4], A[6] and A[8] vectors represent the rook moves on the side squares and the A[5] vector represents the moves of the berserker. On a 3 X 3 chessboard there are 2^9 = 512 ways a berserker could move from the center square (off the center the berserker behaves like a rook) so there are 512 different berserkers.
For the side squares the 512 berserker vectors lead to 42 different sequences, see the overview of berserker sequences. There are 16 berserker vectors that lead to the sequence given above. Their decimal [binary] values are: 111 [001 101 111] , 207 [011 001 111], 231 [011 100 111], 237 [011 101 101], 303 [100 101 111], 363 [101 101 011], 366 [101 101 110], 399 [110 001 111], 423 [110 100 111], 429 [110 101 101], 459 [111 001 011], 462 [111 001 110], 483 [111 100 011], 486 [111 100 110], 489 [111 101 001] and 492 [111 101 100]. These berserker vectors lead for the corner squares to sequence 4*A179606 (with leading term 1 added) and for the central square to sequence 6*A179606 (with leading term 1 added).
This sequence belongs to a family of sequences with GF(x)=(1+x-k*x^2)/(1-3*x+(k-4)*x^2), see A180142.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.
  • David Hooper and Kenneth Whyld, The Oxford Companion to Chess, pp. 131, 225, 1992.

Crossrefs

Cf. A180141 (corner squares) and A180147 (central square).
Cf. Berserker sequences side squares: 4*A007482 (with leading 1 added), A180144, A003500 (n>=1 and a(0)=1), A180142, A000302, A180140 (this sequence), 2*A001077 (n>=1 and a(0)=1), A180146, 4*A154964 (n>=1 and a(0)=1), 4*A123347 (with leading 1 added).

Programs

  • Maple
    nmax:=22; m:=2; A[1]:=[0, 1, 1, 1, 0, 0, 1, 0, 0]: A[2]:=[1, 0, 1, 0, 1, 0, 0, 1, 0]: A[3]:= [1, 1, 0, 0, 0, 1, 0, 0, 1]: A[4]:= [1, 0, 0, 0, 1, 1, 1, 0, 0]: A[5]:=[0, 0, 1, 1, 0, 1, 1, 1, 1]: A[6]:=[0, 0, 1, 1, 1, 0, 0, 0, 1]: A[7]:=[1, 0, 0, 1, 0, 0, 0, 1, 1]: A[8]:=[0, 1, 0, 0, 1, 0, 1, 0, 1]: A[9]:=[0, 0, 1, 0, 0, 1, 1, 1, 0]: A:= Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1-3*x-5*x^2), {x, 0, 22}],x] (* or *) LinearRecurrence[{3,5,0},{1,4,18},23] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    print(Vec((1 + x + x^2)/(1- 3*x - 5*x^2) + O(x^23))); \\ Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1+x+x^2)/(1-3*x-5*x^2).
a(n) = 3*a(n-1) + 5*a(n-2) for n>=3 with a(0)=1, a(1)=4 and a(2)=18.
a(n) = ((22+54*A)*A^(-n-1) + (22+54*B)*B^(-n-1))/145 with A=(-3+sqrt(29))/10 and B=(-3-sqrt(29))/10 for n>=1 with a(0)=1.
5*a(n) = 2*( A015523(n) + 3*A015523(n+1)), n>0 - R. J. Mathar, May 11 2013

A063782 a(0) = 1, a(1) = 3; for n > 1, a(n) = 2*a(n-1) + 4*a(n-2).

Original entry on oeis.org

1, 3, 10, 32, 104, 336, 1088, 3520, 11392, 36864, 119296, 386048, 1249280, 4042752, 13082624, 42336256, 137003008, 443351040, 1434714112, 4642832384, 15024521216, 48620371968, 157338828800, 509159145472, 1647673606144
Offset: 0

Views

Author

Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Aug 17 2001

Keywords

Comments

Ratio of successive terms approaches sqrt(5) + 1.
From Sean A. Irvine, Jun 06 2025: (Start)
Also, number of walks of length n starting at vertex 1 in the following graph:
1---2
|\ /|
| 0 |
|/ \|
4---3. (End)

Examples

			As the INVERT transform of A006138, (1, 2, 5, 11, 26, 59, ...); a(4) = 104 = (26, 11, 5, 2, 1) dot (1, 1, 3, 10, 32) = (26 + 11 + 15 + 20 + 32).
		

Crossrefs

Cf. A006138. Row sums of A215244.

Programs

  • Maple
    a := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(2) fi: 2*a(n-1) + 4*a(n-2); end: for n from 1 to 50 do printf(`%d,`,a(n)+a(n-1)) od:
    f:=n-> simplify(expand((1/2)*(1+sqrt(5))^n + (1/5)*(1+sqrt(5))^n*sqrt(5) - (1/5)*sqrt(5)*(1-sqrt(5))^n + (1/2)*(1 -sqrt(5))^n )); # N. J. A. Sloane, Aug 10 2012
  • Mathematica
    a[n_]:=(MatrixPower[{{1,5},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{2, 4}, {1, 3}, 100] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    { for (n=0, 200, if (n>1, a=2*a1 + 4*a2; a2=a1; a1=a, if (n, a=a1=2, a=a2=1)); if (n, write("b063782.txt", n, " ", a + a2)) ) } \\ Harry J. Smith, Aug 31 2009

Formula

For n >= 1, a(n) = 2^(n-1)*Fibonacci(n+3). - Vladeta Jovovic, Oct 25 2003
G.f.: (1 + x)/(1 - 2*x - 4*x^2). - R. J. Mathar, Feb 06 2010
Equals INVERT transform of A006138 and INVERTi transform of A179606. - Gary W. Adamson, Aug 14 2010
a(n) = (1/2)*(1+sqrt(5))^n + (1/5)*(1+sqrt(5))^n*sqrt(5) - (1/5)*sqrt(5)*(1-sqrt(5))^n + (1/2)*(1-sqrt(5))^n. - Alexander R. Povolotsky, Aug 15 2010
It follows that a(n) is the nearest integer to (and is increasingly close to) (1/2 + 1/sqrt(5))*(1+sqrt(5))^n. - N. J. A. Sloane, Aug 10 2012
a(n) = A063727(n) + A063727(n-1).
a(n) = M^n(1, 1), with the matrix M= [[3, 1], [1, -1]]. Proof by Cayley-Hamilton, using S(n, -I) = (-I)^n*F(n+1), and S = A049310 and F = A000045. Motivated by A319053. - Wolfdieter Lang, Oct 08 2018

Extensions

More terms from James Sellers, Sep 25 2001
Edited (new offset, new initial term, etc.) by N. J. A. Sloane, Aug 19 2010

A180141 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - 2*x^2)/(1 - 3*x - 6*x^2).

Original entry on oeis.org

1, 4, 16, 72, 312, 1368, 5976, 26136, 114264, 499608, 2184408, 9550872, 41759064, 182582424, 798301656, 3490399512, 15261008472, 66725422488, 291742318296, 1275579489816, 5577192379224, 24385054076568, 106618316505048
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
On a 3 X 3 chessboard there are 2^9 = 512 ways to go berserk on the central square (we assume here that a berserker might behave like a rook). The berserker is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program. For the corner squares the 512 berserkers lead to 42 berserker sequences, see the cross-references for some examples.
The sequence above corresponds to just one A[5] vectors with decimal value 495. This vector leads for the side squares to 4*A154964 (for n >= 1 with a(0) = 1) and for the central square to 2*A180141 (for n >= 1 with a(0)=1).
This sequence belongs to a family of sequences with g.f. (1 + x + k*x^2)/(1 - 3*x + (k-4)*x^2), see A123620.

Crossrefs

Cf. A180140 (side squares) and A180147 (central square).
Cf. Berserker sequences corner squares [numerical value A[5]]: 4*A055099 [0, with leading 1 added], A180143 [16], 4*A001353 [17, n>=1 and a(0)=1], A123620 [3], 2*A018916 [19, with leading 1 added], A000302 [15], 4*A179606 [111, with leading 1 added], A089979 [343], 4*A001076 [95, n>=1 and a(0)=1], A180145 [191], A180141 [495, this sequence], 4*A090017 [383, n>=1 and a(0)=1].

Programs

  • Maple
    with(LinearAlgebra): nmax:=22; m:=1; A[5]:= [1,1,1,1,0,1,1,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{3, 6}, {1, 4, 16}, 23] (* Jean-François Alcover, Jan 18 2025 *)

Formula

G.f.: (1 + x - 2*x^2)/(1 - 3*x - 6*x^2).
a(n) = 4*a(n-1) - 2*a(n-3) with a(0)=2, a(1)=8 and a(2)=31.
a(n) = 3*a(n-1) + 6*a(n-2) for n >= 3 with a(0)=1, a(1)=4 and a(2)=16.
a(n) = (6+2*A)*A^(-n-1)/33 + (6+2*B)*B^(-n-1)/33 with A=(-3-sqrt(33))/12 and B=(-3+sqrt(33))/12 for n >= 1 with a(0)=1.

A152187 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2008

Keywords

Comments

Unsigned version of A152185.
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 and 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. (1+2*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k=2), A108981 (k=4), A152187 (k=5; this sequence), A154964 (k=6), A179602 (k=7) and A179598 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A036563 (k=-2), A054486 (k=-1), A084244 (k=0), A108300 (k=1) and A000351 (k=10).
Inverse binomial transform of A015449 (without the first leading 1).
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,5},{1,5},40] (* Harvey P. Dale, May 03 2013 *)

Formula

G.f.: (1+2*x)/(1 - 3*x - 5*x^2).
Lim_{k->infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2. - Johannes W. Meijer, Aug 01 2010
G.f.: G(0)*(1+2*x)/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

A180147 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 4*x - 3*x^2 + 6*x^3).

Original entry on oeis.org

1, 7, 31, 139, 607, 2659, 11623, 50827, 222223, 971635, 4248247, 18574555, 81213151, 355086787, 1552539271, 6788138539, 29679651247, 129767784979, 567381262423, 2480750497147, 10846539065983, 47424120180835
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
On a 3 X 3 chessboard there are 2^9 = 512 ways to go berserk on the central square (we assume here that a berserker might behave like a rook). The berserker is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program. For the central squares the 512 berserkers lead to 42 berserker sequences, see the cross-references for some examples.
The sequence above corresponds to six A[5] vectors with decimal values between 191 and 506. These vectors lead for the corner squares to A180145 and for the side squares to A180146.

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).
Cf. Berserker sequences central square [numerical values A[5]]: A000007 [0], A000012 [16], 2*A001835 [17, n>=1 and a(0)=1], A155116 [3], A077829 [7], A000302 [15], 6*A179606 [111, with leading 1 added], 2*A033887 [95, n>=1 and a(0)=1], A180147 [191, this sequence], 2*A180141 [495, n>=1 and a(0)=1], 4*A107979 [383, with leading 1 added].

Programs

  • Maple
    with(LinearAlgebra): nmax:=22; m:=5; A[5]:=[0,1,0,1,1,1,1,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1+3x)/(1-4x-3x^2+6x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,3,-6},{1,7,31},40] (* Harvey P. Dale, Oct 10 2011 *)

Formula

G.f.: (1+3*x)/(1 - 4*x - 3*x^2 + 6*x^3).
a(n) = 4*a(n-1) + 3*a(n-2) - 6*a(n-3) with a(0)=1, a(1)=7 and a(2)=31.
a(n) = -1/2 + (7+6*A)*A^(-n-1)/22 + (7+6*B)*B^(-n-1)/22 with A=(-3+sqrt(33))/12 and B=(-3-sqrt(33))/12.
a(n) = A180146(n) + 3*A180146(n-1) with A180146(-1) = 0.

A197189 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 11, 43, 184, 767, 3221, 13498, 56599, 237287, 994856, 4171003, 17487289, 73316882, 307387091, 1288745683, 5403172504, 22653245927, 94975600301, 398193030538, 1669457093119, 6999336432047, 29345294761736, 123032566445443, 515824173145009, 2162635351662242
Offset: 0

Views

Author

Bruno Berselli, Oct 11 2011

Keywords

Crossrefs

Cf. for type of recurrence: A015523, A072263, A072264, A152187, A179606 and also A180140.

Programs

  • Magma
    [n le 2 select n else 3*Self(n-1)+5*Self(n-2): n in [1..26]];
  • Mathematica
    a = {1, 2}; Do[AppendTo[a, 3 a[[-1]] + 5 a[[-2]]], {24}]; a (* Bruno Berselli, Dec 26 2012 *)
  • PARI
    v=vector(26); v[1]=1; v[2]=2; for(i=3, #v, v[i]=3*v[i-1]+5*v[i-2]); v
    

Formula

G.f.: (1-x)/(1-3*x-5*x^2).
a(n) = ((29+sqrt(29))*(3+sqrt(29))^n+(29-sqrt(29))*(3-sqrt(29))^n)/(58*2^n).
a(n) = A015523(n+1)-A015523(n).
G.f.: G(0)*(1-x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

A072263 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 19, 72, 311, 1293, 5434, 22767, 95471, 400248, 1678099, 7035537, 29497106, 123669003, 518492539, 2173822632, 9113930591, 38210904933, 160202367754, 671661627927, 2815996722551, 11806298307288, 49498878534619, 207528127140297
Offset: 0

Views

Author

Miklos Kristof, Jul 08 2002

Keywords

Comments

Inverse binomial transform of A087130. - Johannes W. Meijer, Aug 01 2010
Pisano period lengths: 1, 3, 4, 6, 4, 12, 3, 12, 12, 12, 120, 12, 12, 3, 4, 24, 288, 12, 72, 12... - R. J. Mathar, Aug 10 2012
This is the Lucas sequence V(3,-5). - Bruno Berselli, Jan 09 2013

Examples

			a(5)=5*b(4)+b(6): 1293=5*57+1008.
		

Crossrefs

Appears in A179606 and A015523. - Johannes W. Meijer, Aug 01 2010

Programs

  • GAP
    a:=[2,3];; for n in [3..40] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    I:=[2,3]; [n le 2 select I[n] else 3*Self(n-1) +5*Self(n-2): n in [1..40]]; // G. C. Greubel, Jan 14 2020
    
  • Maple
    seq(coeff(series((2-3*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 14 2020
  • Mathematica
    LinearRecurrence[{3,5},{2,3},40] (* Harvey P. Dale, Nov 23 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-3*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
    
  • Sage
    [lucas_number2(n,3,-5) for n in range(0, 16)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = 2*A015523(n+1) - 3*A015523(n).
a(n) = ((3 + sqrt(29))/2)^n + ((3 - sqrt(29))/2)^n.
G.f.: (2-3*x)/(1-3*x-5*x^2). - R. J. Mathar, Feb 06 2010
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k -> Infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2.
Limit_{n -> Infinity} (A072263(n)/A015523(n)) = sqrt(29). (End)
G.f.: G(0), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 29*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = 5^((n-1)/2)*( 2*sqrt(5)*Fibonacci(n+1, 3/sqrt(5)) - 3*Fibonacci(n, 3/sqrt(5)) ). - G. C. Greubel, Jan 14 2020

Extensions

Offset changed and terms added by Johannes W. Meijer, Jul 19 2010
Showing 1-10 of 12 results. Next