A072271 A partial product representation of f(n) = A015523(n) and L(n) = A072263(n).
3, 1, 24, 19, 431, 14, 7589, 311, 5559, 241, 2345179, 286, 41223001, 4229, 70051, 95471, 12736968311, 5309, 223887209309, 88321, 21607111, 1306469, 69176042380099, 94846, 2821250547551, 22964761, 160204320879, 27289081, 375703599163598591, 119641
Offset: 1
Keywords
Examples
f(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 3*1*24*19*14*286 = 5477472 for even n; f(7) = a(2)*a(14) = 1*4229 = 4229 for odd n. L(6) = a(4)*a(12) = 19*286 = 5434 = 5*f(5) + f(7) = 5*241 + 4229 for even n; L(15) = a(1)*a(3)*a(5)*a(15) = 3*24*431*70051 = 2173822632 for odd n.
Formula
a(n) = (h-3)^g(n) * K(n, h^2/5) for n > 2 where h = (3+sqrt(29))/2, Phi(n, x) = n-th cyclotomic polynomial and g(n) is the order of Phi(n, x).
Extensions
More terms and entry revised by Sean A. Irvine, Sep 19 2024
Comments