cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A015523 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 14, 57, 241, 1008, 4229, 17727, 74326, 311613, 1306469, 5477472, 22964761, 96281643, 403668734, 1692414417, 7095586921, 29748832848, 124724433149, 522917463687, 2192374556806, 9191710988853, 38537005750589
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 and 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
For n >= 1, the sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the side squares to A152187 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. 1/(1-3*x-k*x^2). Red king sequences that are members of this family are A007482 (k=2), A015521 (k=4), A015523 (k=5; this sequence), A083858 (k=6), A015524 (k=7) and A015525 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A049072 (k=-4), A057083 (k=-3), A000225 (k=-2), A001906 (k=-1), A000244 (k=0), A006190 (k=1), A030195 (k=3), A099012 (k=9), A015528 (k=10) and A015529 (k=11).
Inverse binomial transform of A052918 (with extra leading 0).
(End)
First differences in A197189. - Bruno Berselli, Oct 11 2011
Pisano period lengths: 1, 3, 4, 6, 4, 12, 3, 12, 12, 12, 120, 12, 12, 3, 4, 24, 288, 12, 72, 12, ... - R. J. Mathar, Aug 10 2012
This is the Lucas U(P=3, Q=-5) sequence, and hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 3 + 5/(3 + 5/(3 + 5/(3 + ... + 5/3))) with n 5's. - Greg Dresden, Oct 06 2019

Crossrefs

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Join[{a = 0, b = 1}, Table[c = 3 * b + 5 * a; a = b; b = c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    a[0] := 0; a[1] := 1; a[n_] := a[n] = 3a[n - 1] + 5a[n - 2]; Table[a[n], {n, 0, 49}] (* Alonso del Arte, Jan 16 2011 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x-5*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,3,-5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 5*a(n-2).
From Paul Barry, Jul 20 2004: (Start)
a(n) = ((3/2 + sqrt(29)/2)^n - (3/2 - sqrt(29)/2)^n)/sqrt(29).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*5^k*3^(n-2*k-1). (End)
G.f.: x/(1 - 3*x - 5*x^2). - R. J. Mathar, Nov 16 2007
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A072263(n) + a(n)*sqrt(29))/2.
Limit_{n->oo} A072263(n)/a(n) = sqrt(29). (End)
G.f.: G(0)*x/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
E.g.f.: 2*exp(3*x/2)*sinh(sqrt(29)*x/2)/sqrt(29). - Stefano Spezia, Oct 06 2019

A015442 a(n) = a(n-1) + 7*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 8, 15, 71, 176, 673, 1905, 6616, 19951, 66263, 205920, 669761, 2111201, 6799528, 21577935, 69174631, 220220176, 704442593, 2245983825, 7177081976, 22898968751, 73138542583, 233431323840, 745401121921, 2379420388801
Offset: 0

Views

Author

Keywords

Comments

One obtains A015523 through a binomial transform, and A197189 by shifting one place left (starting 1,1,8 with offset 0) followed by a binomial transform. - R. J. Mathar, Oct 11 2011
The compositions of n in which each positive integer is colored by one of p different colors are called p-colored compositions of n. For n>=2, 8*a(n-1) equals the number of 8-colored compositions of n, with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
a(n+1) is the number of compositions (ordered partitions) of n into parts 1 and 2, where there are 7 sorts of part 2. - Joerg Arndt, Jan 16 2024
Pisano period lengths: 1, 3, 8, 6, 4, 24, 1, 6, 24, 12, 60, 24, 12, 3, 8, 6, 288, 24, 120, 12, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else Self(n-1) + 7*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
    
  • Mathematica
    LinearRecurrence[{1, 7}, {0, 1}, 30] (* Vincenzo Librandi, Oct 17 2012 *)
    nxt[{a_,b_}]:={b,7a+b}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Feb 25 2022 *)
  • PARI
    concat(0,Vec(1/(1-x-7*x^2)+O(x^99))) \\ Charles R Greathouse IV, Mar 12 2014
  • Sage
    [lucas_number1(n,1,-7) for n in range(0, 27)] # Zerinvary Lajos, Apr 22 2009
    

Formula

O.g.f.: x/(1-x-7x^2). - R. J. Mathar, May 06 2008
a(n) = ( ((1+sqrt(29))/2)^(n+1) - ((1-sqrt(29))/2)^(n+1) )/sqrt(29).
a(n) = 8*a(n-2) + 7*a(n-3) with characteristic polynomial x^3 - 8*x - 7. - Roger L. Bagula, May 30 2007
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-7)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = (Sum_{1<=k<=n, k odd} C(n,k)*29^((k-1)/2))/2^(n-1). - Vladimir Shevelev, Feb 05 2014
a(n) = sqrt(-7)^(n-1)*S(n-1, 1/sqrt(-7)), with the Chebyshev polynomial S(n, x), and S(-1, x) = 1 (see A049310). - Wolfdieter Lang, Nov 26 2023

A179606 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 3*x - 5*x^2).

Original entry on oeis.org

1, 4, 17, 71, 298, 1249, 5237, 21956, 92053, 385939, 1618082, 6783941, 28442233, 119246404, 499950377, 2096083151, 8788001338, 36844419769, 154473265997, 647641896836, 2715292020493, 11384085545659, 47728716739442
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the side squares to A152187.
This sequence belongs to a family of sequences with g.f. (1 + (k-4)*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k= 2), A015521 (k=4), A179606 (k=5; this sequence), A154964 (k=6), A179603 (k=7) and A179599 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A006190 (k=1), A133494 (k=0) and A168616 (k=-2).
Inverse binomial transform of A052918.
The sequence b(n+1) = 6*a(n), n >= 0 with b(0)=1, is a berserker sequence, see A180147. The b(n) sequence corresponds to 16 A[5] vectors with decimal values between 111 and 492. These vectors lead for the corner squares to sequence c(n+1)=4*A179606(n), n >= 0 with c(0)=1, and for the side squares to A180140. - Johannes W. Meijer, Aug 14 2010
Equals the INVERT transform of A063782: (1, 3, 10, 32, 104, ...). Example: a(3) = 71 = (1, 1, 4, 7) dot (32, 10, 3, 1) = (32 + 10 + 12 + 17). - Gary W. Adamson, Aug 14 2010

Crossrefs

Cf. A179597 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=22; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [0,0,0,1,1,1,0,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1+x)/(1-3*x-5*x^2), {x, 0, 22}],x] (* or *) LinearRecurrence[{3,5,0},{1,4},23] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    print(Vec((1 + x)/(1- 3*x - 5*x^2) + O(x^23))); \\ Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1+x)/(1 - 3*x - 5*x^2).
a(n) = A015523(n) + A015523(n+1).
a(n) = 3*a(n-1) + 5*a(n-2) with a(0) = 1 and a(1) = 4.
a(n) = ((29 + 7*sqrt(29))*A^(-n-1) + (29-7*sqrt(29))*B^(-n-1))/290 with A = (-3+sqrt(29))/10 and B = (-3-sqrt(29))/10
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n+1)*A000351(n)*A130196(n)/(A015523(n)*sqrt(29) - A072263(n)) for n >= 1.

A152187 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2008

Keywords

Comments

Unsigned version of A152185.
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 and 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. (1+2*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k=2), A108981 (k=4), A152187 (k=5; this sequence), A154964 (k=6), A179602 (k=7) and A179598 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A036563 (k=-2), A054486 (k=-1), A084244 (k=0), A108300 (k=1) and A000351 (k=10).
Inverse binomial transform of A015449 (without the first leading 1).
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,5},{1,5},40] (* Harvey P. Dale, May 03 2013 *)

Formula

G.f.: (1+2*x)/(1 - 3*x - 5*x^2).
Lim_{k->infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2. - Johannes W. Meijer, Aug 01 2010
G.f.: G(0)*(1+2*x)/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

A072263 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 19, 72, 311, 1293, 5434, 22767, 95471, 400248, 1678099, 7035537, 29497106, 123669003, 518492539, 2173822632, 9113930591, 38210904933, 160202367754, 671661627927, 2815996722551, 11806298307288, 49498878534619, 207528127140297
Offset: 0

Views

Author

Miklos Kristof, Jul 08 2002

Keywords

Comments

Inverse binomial transform of A087130. - Johannes W. Meijer, Aug 01 2010
Pisano period lengths: 1, 3, 4, 6, 4, 12, 3, 12, 12, 12, 120, 12, 12, 3, 4, 24, 288, 12, 72, 12... - R. J. Mathar, Aug 10 2012
This is the Lucas sequence V(3,-5). - Bruno Berselli, Jan 09 2013

Examples

			a(5)=5*b(4)+b(6): 1293=5*57+1008.
		

Crossrefs

Appears in A179606 and A015523. - Johannes W. Meijer, Aug 01 2010

Programs

  • GAP
    a:=[2,3];; for n in [3..40] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    I:=[2,3]; [n le 2 select I[n] else 3*Self(n-1) +5*Self(n-2): n in [1..40]]; // G. C. Greubel, Jan 14 2020
    
  • Maple
    seq(coeff(series((2-3*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 14 2020
  • Mathematica
    LinearRecurrence[{3,5},{2,3},40] (* Harvey P. Dale, Nov 23 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-3*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
    
  • Sage
    [lucas_number2(n,3,-5) for n in range(0, 16)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = 2*A015523(n+1) - 3*A015523(n).
a(n) = ((3 + sqrt(29))/2)^n + ((3 - sqrt(29))/2)^n.
G.f.: (2-3*x)/(1-3*x-5*x^2). - R. J. Mathar, Feb 06 2010
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k -> Infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2.
Limit_{n -> Infinity} (A072263(n)/A015523(n)) = sqrt(29). (End)
G.f.: G(0), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 29*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = 5^((n-1)/2)*( 2*sqrt(5)*Fibonacci(n+1, 3/sqrt(5)) - 3*Fibonacci(n, 3/sqrt(5)) ). - G. C. Greubel, Jan 14 2020

Extensions

Offset changed and terms added by Johannes W. Meijer, Jul 19 2010

A072264 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 8, 29, 127, 526, 2213, 9269, 38872, 162961, 683243, 2864534, 12009817, 50352121, 211105448, 885076949, 3710758087, 15557659006, 65226767453, 273468597389, 1146539629432, 4806961875241, 20153583772883, 84495560694854, 354254600948977, 1485241606321201
Offset: 0

Views

Author

Miklos Kristof, Jul 08 2002

Keywords

Examples

			a(5)=3*a(4)+5*a(3): 127=3*29+5*8=87+40.
		

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    [n le 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..26]];  // Bruno Berselli, Oct 11 2011
    
  • Maple
    seq(coeff(series((1-2*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 14 2020
  • Mathematica
    LinearRecurrence[{3,5},{1,1},30] (* Harvey P. Dale, Feb 17 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
    
  • Sage
    def A072264_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x)/(1-3*x-5*x^2) ).list()
    A072264_list(30) # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: (1-2*x)/(1-3*x-5*x^2). - Jaume Oliver Lafont, Mar 06 2009
G.f.: G(0)*(1-2*x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = 5^((n-1)/2)*( sqrt(5)*Fibonacci(n+1, 3/sqrt(5)) - 2*Fibonacci(n, 3/sqrt(5)) ). - G. C. Greubel, Jan 14 2020

Extensions

Offset changed and more terms added by Bruno Berselli, Oct 11 2011

A202209 Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 13, 5, 0, 0, 34, 19, 1, 0, 0, 89, 65, 8, 0, 0, 0, 233, 210, 42, 1, 0, 0, 0, 610, 654, 183, 11, 0, 0, 0, 0, 1597, 1985, 717, 74, 1, 0, 0, 0, 0, 4181, 5911, 2622, 394, 14, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Comments

Riordan array ((1-x)/(1-3x+x^2), x^2/(1-3x+x^2)) .

Examples

			Triangle begins :
1
2, 0
5, 1, 0
13, 5, 0, 0
34, 19, 1, 0, 0
89, 65, 8, 0, 0, 0
233, 210, 42, 1, 0, 0, 0
		

Crossrefs

Cf. A000045, A000079, A001519, A001870, A001906, A126124, A202207 (antidiagonal sums)

Formula

T(n,k) = 3*T(n-1,k) - T(n-2,k) + T(n-2,k-1).
G.f.: (1-x)/(1-3x+(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively.
T(n,0) = A122367(n) = A000045(2n+1).

A183189 Triangle T(n,k), read by rows, given by (2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 6, 1, 0, 18, 5, 0, 0, 54, 21, 1, 0, 0, 162, 81, 8, 0, 0, 0, 486, 297, 45, 1, 0, 0, 0, 1458, 1053, 216, 11, 0, 0, 0, 0, 4374, 3645, 945, 78, 1, 0, 0, 0, 0, 13122, 12393, 3888, 450, 14, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Comments

Riordan array ((1-x)/(1-3x), x^2/(1-3x)).
A skewed version of triangular array in A193723.
A202209*A007318 as infinite lower triangular matrices.

Examples

			Triangle begins:
  1
  2, 0
  6, 1, 0
  18, 5, 0, 0
  54, 21, 1, 0, 0
  162, 81, 8, 0, 0, 0
  486, 297, 45, 1, 0, 0, 0
		

Crossrefs

Cf. A000244, A025192, A081038, A183188 (antidiagonal sums).

Formula

G.f.: (1-x)/(1-3*x-y*x^2).
T(n,k) = Sum_{j, j>=0} T(n-2-j,k-1)*3^j.
T(n,k) = 3*T(n-1,k) + T(n-2,k-1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5 respectively.
Showing 1-8 of 8 results.