A179609 a(n)=(5-(-1)^n-6*n)*2^(n-2).
1, 0, -8, -24, -80, -192, -512, -1152, -2816, -6144, -14336, -30720, -69632, -147456, -327680, -688128, -1507328, -3145728, -6815744, -14155776, -30408704, -62914560, -134217728, -276824064, -587202560, -1207959552, -2550136832
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2, 4, -8).
Programs
-
Mathematica
Table[(5-(-1)^n-6n)2^(n-2),{n,0,30}] (* or *) LinearRecurrence[{2,4,-8},{1,0,-8},30] (* Harvey P. Dale, Mar 25 2021 *)
Formula
GF(x) = (1-2*x-12*x^2)/(1-2*x-4*x^2+8*x^3)
a(n) = 2*a(n-1)+4*a(n-2)-8*a(n-3) with a(1)=1, a(2)=0 and a(3)=-8.
a(n) = (5-(-1)^n-6*n)*2^(n-2)
Comments