cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384284 Decimal expansion of the surface area of a gyroelongated pentagonal cupola with unit edge.

Original entry on oeis.org

2, 5, 2, 4, 0, 0, 0, 3, 7, 9, 0, 8, 3, 2, 5, 8, 3, 5, 1, 3, 7, 3, 1, 2, 7, 8, 0, 5, 1, 8, 9, 2, 5, 8, 6, 4, 5, 2, 8, 1, 6, 6, 6, 2, 3, 6, 5, 1, 6, 9, 5, 5, 8, 3, 2, 2, 1, 5, 3, 7, 7, 8, 9, 5, 4, 5, 3, 5, 6, 0, 8, 5, 6, 9, 1, 2, 6, 6, 9, 3, 7, 5, 9, 2, 2, 6, 0, 8, 9, 2
Offset: 2

Views

Author

Paolo Xausa, May 27 2025

Keywords

Comments

The gyroelongated pentagonal cupola is Johnson solid J_24.

Examples

			25.240003790832583513731278051892586452816662365...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 25*Sqrt[3] + Sqrt[725 + 310*Sqrt[5]])/4, 10, 100]]
    First[RealDigits[PolyhedronData["J24", "SurfaceArea"], 10, 100]]
  • PARI
    (20 + 25*sqrt(3) + sqrt(725 + 310*sqrt(5)))/4 \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals (20 + 25*sqrt(3) + sqrt(725 + 310*sqrt(5)))/4 = (20 + 25*A002194 + sqrt(725 + 310*A002163))/4.
Equals the largest root of 256*x^8 - 10240*x^7 + 12800*x^6 + 3200000*x^5 - 22476000*x^4 - 203280000*x^3 + 1412362500*x^2 + 3080375000*x - 17984046875.

A384286 Decimal expansion of the surface area of a gyroelongated pentagonal rotunda with unit edge.

Original entry on oeis.org

3, 1, 0, 0, 7, 4, 5, 4, 3, 0, 3, 2, 3, 8, 5, 1, 4, 7, 4, 4, 4, 3, 5, 6, 4, 5, 8, 6, 5, 7, 1, 7, 9, 7, 4, 9, 0, 8, 5, 3, 2, 0, 3, 9, 7, 8, 2, 4, 8, 3, 5, 2, 5, 7, 5, 3, 2, 5, 9, 0, 1, 1, 2, 1, 3, 9, 6, 9, 8, 6, 9, 8, 0, 1, 3, 0, 7, 5, 2, 4, 9, 6, 2, 2, 3, 9, 7, 2, 8, 1
Offset: 2

Views

Author

Paolo Xausa, May 30 2025

Keywords

Comments

The gyroelongated pentagonal rotunda is Johnson solid J_25.

Examples

			31.00745430323851474443564586571797490853203978248...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(15*Sqrt[3] + Sqrt[650 + 290*Sqrt[5]])/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J25", "SurfaceArea"], 10, 100]]

Formula

Equals (15*sqrt(3) + sqrt(650 + 290*sqrt(5)))/2 = (15*A002194 + sqrt(650 + 290*A002163))/2.
Equals the largest root of 256*x^8 - 339200*x^6 + 98924000*x^4 - 9264250000*x^2 + 176295015625.

A179641 Decimal expansion of the volume of pentagonal dipyramid with edge length 1.

Original entry on oeis.org

6, 0, 3, 0, 0, 5, 6, 6, 4, 7, 9, 1, 6, 4, 9, 1, 4, 1, 3, 6, 7, 4, 3, 1, 1, 3, 9, 0, 6, 0, 9, 3, 9, 6, 8, 6, 2, 8, 6, 7, 1, 8, 1, 9, 6, 6, 3, 4, 2, 9, 3, 8, 1, 0, 3, 5, 5, 9, 0, 8, 1, 0, 3, 7, 8, 4, 2, 1, 0, 0, 7, 7, 1, 3, 6, 4, 8, 3, 7, 4, 1, 6, 1, 7, 8, 6, 7, 8, 6, 7, 3, 6, 4, 8, 9, 8, 5, 2, 2, 9, 1, 4, 1, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Pentagonal dipyramid: 7 vertices, 15 edges, and 10 faces.

Examples

			0.60300566479164914136743113906093968628671819663429381035590810378421...
		

Crossrefs

Programs

Formula

Digits of (5+sqrt(5))/12.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010
Showing 1-3 of 3 results.