A179661 Triangle read by rows: T(n,k) is the largest least common multiple of any k-element subset of the first n positive integers.
1, 2, 2, 3, 6, 6, 4, 12, 12, 12, 5, 20, 60, 60, 60, 6, 30, 60, 60, 60, 60, 7, 42, 210, 420, 420, 420, 420, 8, 56, 280, 840, 840, 840, 840, 840, 9, 72, 504, 2520, 2520, 2520, 2520, 2520, 2520, 10, 90, 630, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 11, 110, 990
Offset: 1
Examples
Triangle begins: [ 1 ], [ 2, 2 ], [ 3, 6, 6 ], [ 4, 12, 12, 12 ], [ 5, 20, 60, 60, 60 ], [ 6, 30, 60, 60, 60, 60 ].
Programs
-
Magma
A179661:=func< n, k | Max([ LCM(s): s in Subsets({1..n}, k) ]) >; z:=12; [ A179661(n, k): k in [1..n], n in [1..z] ]; // Klaus Brockhaus, Jan 16 2011
-
Mathematica
A179661[n_,k_]:=Max[LCM@@@Subsets[Range[n],{k}]]; A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2]; A002024[n_]:=Floor[1/2+Sqrt[2*n]]; A179661[n_]:=A179661[A002024[n],A002260[n]]
Formula
T(n,k) = max{ lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }.
Comments