A179667 Products of the 5th power of a prime and 2 distinct primes (p^5*q*r).
480, 672, 1056, 1120, 1248, 1632, 1760, 1824, 2080, 2208, 2430, 2464, 2720, 2784, 2912, 2976, 3040, 3402, 3552, 3680, 3808, 3936, 4128, 4256, 4512, 4576, 4640, 4960, 5088, 5152, 5346, 5664, 5856, 5920, 5984, 6318, 6432, 6496, 6560, 6688, 6816, 6880
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,5}; Select[Range[10000], f]
-
PARI
list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/5),forprime(q=2,sqrt(lim\p^5),if(p==q,next);t=p^5*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A179667(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**5)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(x//p**6) for p in primerange(integer_nthroot(x,6)[0]+1))-primepi(integer_nthroot(x,7)[0]) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025