A179669 Products of form p^4*q^2*r where p, q and r are three distinct primes.
720, 1008, 1200, 1584, 1620, 1872, 2268, 2352, 2448, 2736, 2800, 3312, 3564, 3920, 4050, 4176, 4212, 4400, 4464, 5200, 5328, 5508, 5808, 5904, 6156, 6192, 6768, 6800, 7452, 7500, 7600, 7632, 7938, 8112, 8496, 8624, 8784, 9200, 9396, 9648, 9680, 10044
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, List of Prime Signatures
- Index to sequences related to prime signature
Crossrefs
Cf. A137493.
Programs
-
Maple
N:= 20000: # for terms < N P:= select(isprime,[2,seq(i,i=1..N/(3^2*2^4),2)]): R:= NULL: for i from 1 while P[i]^4 * 2^2*3 < N do for j from 1 while P[i]^4 * P[j]^2 *2 < N do if j = i then next fi; m:= ListTools:-BinaryPlace(P,N/P[i]^4/P[j]^2); R:= R, seq(P[i]^4*P[j]^2*P[k],k={$1..m} minus {i,j}); od od: sort([R]); # Robert Israel, Mar 28 2025
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,4}; Select[Range[10000], f]
-
PARI
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/4), t1=p^4;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A179669(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//(p**4*q**2)) for p in primerange(integer_nthroot(x,4)[0]+1) for q in primerange(isqrt(x//p**4)+1))+sum(primepi(integer_nthroot(x//p**4,3)[0]) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(isqrt(x//p**5)) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(x//p**6) for p in primerange(integer_nthroot(x,6)[0]+1))-(primepi(integer_nthroot(x,7)[0])<<1) return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025