A179686 Let m > k > 0 be odd numbers and operations "m<+>k" and "m<->k" be defined as in A179382 and A179480. Then the sequence m<+>k, m<->(m<+>k), m<+>(m<->(m<+>k)), ... is periodic; a(n) is its smallest period starting from the seeds m=2*n-1 and k=1.
1, 2, 4, 2, 2, 2, 4, 2, 6, 4, 4, 6, 8, 6, 4, 2, 4, 10, 4, 6, 2, 4, 12, 12, 4, 14, 12, 2, 14, 14, 4, 2, 18, 12, 16, 4, 8, 16, 16, 14, 18, 4, 12, 4, 4, 4, 20, 10, 6, 22, 24, 4, 26, 6, 16, 6, 20, 4, 12, 26, 8, 22, 4, 2, 34, 8, 20, 14, 34, 24, 32, 6, 20, 42, 4, 12, 8, 10, 24
Offset: 2
Keywords
Examples
If n=4, 2*n-1=7, then we have 7<+>1=1, 7<->1=3, 7<+>3=5, 7<->5=1. Thus a(4)=4.
Programs
-
Maple
pidx := proc(L,n,m) for i from 1 to nops(L)-1 do if [op(i..i+1,L)] = [n,m] then return i; end if; end do: return -1 ; end proc: A179686aux := proc(x, y) local xtrack, xitr, p; xtrack := [A000265(x+y)] ; while true do if type(nops(xtrack),'odd') then xitr := A000265(x-op(-1, xtrack)) ; else xitr := A000265(x+op(-1, xtrack)) ; end if; xtrack := [op(xtrack),xitr] ; p := pidx(xtrack,op(-2,xtrack),op(-1,xtrack)) ; if p >=1 and p < nops(xtrack) -2 then return nops(xtrack)-p-1 ; end if; end do: end proc: A179686 := proc(n) if n = 2 then 1; else A179686aux(2*n-1,1) ; end if; end proc: seq(A179686(n),n=2..80) ; # R. J. Mathar, Dec 04 2011
Extensions
Extended beyond a(24) by R. J. Mathar, Dec 04 2011