cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190464 Numbers with prime factorization p^4*q^6.

Original entry on oeis.org

5184, 11664, 40000, 153664, 250000, 455625, 937024, 1265625, 1750329, 1827904, 1882384, 5345344, 8340544, 9529569, 10673289, 17909824, 20820969, 28344976, 37515625, 45265984, 59105344, 60886809, 73530625, 77228944, 95004009, 119946304, 143496441, 180848704, 204004089, 218803264
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A175745 (Numbers with 35 divisors).
First different term in A175745 is 17179869184(=2^34).

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={4,6}; Select[Range[50000000],f] (*and*) lst={};Do[Do[If[n!=m,AppendTo[lst,Prime[n]^6*Prime[m]^4]], {n,50}],{m,50}]; Take[Union@lst,50]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(6) - P(10) = A085964 * A085966 - P(10) = 0.000320..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A190465 Numbers with prime factorization p^5q^5.

Original entry on oeis.org

7776, 100000, 537824, 759375, 4084101, 5153632, 11881376, 39135393, 45435424, 52521875, 79235168, 90224199, 205962976, 345025251, 503284375, 601692057, 656356768, 916132832, 1160290625, 1564031349, 2219006624, 2706784157, 3707398432
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1}; Select[Range[10000],f]^5
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, lim^(1/10), t=p^5;forprime(q=p+1, (lim\t)^(1/5), listput(v,t*q^5))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

Formula

Sum_{n>=1} 1/a(n) = (P(5)^2 - P(10))/2 = (A085965^2 - P(10))/2 = 0.000142..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A355462 Powerful numbers divisible by exactly 2 distinct primes.

Original entry on oeis.org

36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1936, 1944, 2000, 2025, 2116, 2304, 2312, 2500
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2022

Keywords

Comments

First differs from A286708 at n = 25.
Number of the form p^i * q^j, where p != q are primes and i,j > 1.
Numbers k such that A001221(k) = 2 and A051904(k) >= 2.
The possible values of the number of the divisors (A000005) of terms in this sequence is any composite number that is not 8 or twice a prime (A264828 \ {1, 8}).
675 = 3^3*5^2 and 676 = 2^2*13^2 are 2 consecutive integers in this sequence. There are no other such pairs below 10^22 (the lesser members of such pairs are terms of A060355).

Examples

			36 is a term since 36 = 2^2 * 3^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], Length[(e = FactorInteger[#][[;; , 2]])] == 2 && Min[e] > 1 &]
  • PARI
    is(n) = {my(f=factor(n)); #f~ == 2 && vecmin(f[,2]) > 1};

Formula

Sum_{n>=1} 1/a(n) = ((Sum_{p prime} (1/(p*(p-1))))^2 - Sum_{p prime} (1/(p^2*(p-1)^2)))/2 = 0.1583860791... .
Showing 1-3 of 3 results.