A179746 Numbers of the form p^4*q^2*r^2 where p, q, and r are distinct primes.
3600, 7056, 8100, 15876, 17424, 19600, 22500, 24336, 39204, 41616, 48400, 51984, 54756, 67600, 76176, 86436, 93636, 94864, 99225, 115600, 116964, 121104, 122500, 132496, 138384, 144400, 171396, 197136, 211600, 226576, 240100, 242064, 245025
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, List of Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,4}; Select[Range[200000],f]
-
PARI
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/4), t1=p^4;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A179746(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**2)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))-primepi(integer_nthroot(x,4)[0]) return bisection(f,n,n)**2 # Chai Wah Wu, Mar 27 2025
Formula
Sum_{n>=1} 1/a(n) = (P(2)^2*P(4) - P(4)^2)/2 - P(2)*P(6) + P(8) = 0.00125114..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
a(n) = A085987(n)^2. - R. J. Mathar, May 05 2023
Comments