A179837 Triangle T(n,k) read by rows: the coefficient [x^k] of the product_{s=1..n} (x+16*cos(s*Pi/(2n+1))^4), 0<=k<=n.
1, 1, 1, 1, 7, 1, 1, 26, 13, 1, 1, 70, 87, 19, 1, 1, 155, 403, 184, 25, 1, 1, 301, 1462, 1216, 317, 31, 1, 1, 532, 4446, 6190, 2725, 486, 37, 1, 1, 876, 11826, 25954, 17903, 5146, 691, 43, 1, 1, 1365, 28314, 93536, 96055, 41461, 8695, 932, 49, 1, 1, 2035
Offset: 0
Examples
1 1 1 1 7 1 1 26 13 1 1 70 87 19 1 1 155 403 184 25 1 1 301 1462 1216 317 31 1 1 532 4446 6190 2725 486 37 1 1 876 11826 25954 17903 5146 691 43 1 1 1365 28314 93536 96055 41461 8695 932 49 1 1 2035 62271 298376 439019 271467 83020 13588 1209 55 1
Links
- Alin Bostan, Bruno Salvy, Khang Tran, Generating functions of Chebyshev-like polynomials, 2009.
- Alin Bostan, Bruno Salvy, et al., Generating functions of Chebyshev-like polynomials, Intl. J. Number Theory 6 (7) (2010) 1659.
Crossrefs
Cf. A179838
Programs
-
PARI
x='x+O('x^11); concat(apply(p->Vecrev(p), Vec(Ser((1-x)^3/((x-1)^4 - t*x*(x+1)^2))))) \\ Gheorghe Coserea, Apr 20 2017
Formula
T(n,1) = A006325(n+1).
A(x;t) = Sum_{n>=0} P_n(t)*x^n = (1-x)^3/((x-1)^4 - t*x*(x+1)^2), where P_n(t) = Sum_{k=0..n} T(n,k)*t^k. - Gheorghe Coserea, Apr 20 2017
Comments