cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A179837 Triangle T(n,k) read by rows: the coefficient [x^k] of the product_{s=1..n} (x+16*cos(s*Pi/(2n+1))^4), 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 26, 13, 1, 1, 70, 87, 19, 1, 1, 155, 403, 184, 25, 1, 1, 301, 1462, 1216, 317, 31, 1, 1, 532, 4446, 6190, 2725, 486, 37, 1, 1, 876, 11826, 25954, 17903, 5146, 691, 43, 1, 1, 1365, 28314, 93536, 96055, 41461, 8695, 932, 49, 1, 1, 2035
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2011

Keywords

Comments

Polynomial coefficients of H_n^(2)(x) by Bostan et al.

Examples

			1
1 1
1 7 1
1 26 13 1
1 70 87 19 1
1 155 403 184 25 1
1 301 1462 1216 317 31 1
1 532 4446 6190 2725 486 37 1
1 876 11826 25954 17903 5146 691 43 1
1 1365 28314 93536 96055 41461 8695 932 49 1
1 2035 62271 298376 439019 271467 83020 13588 1209 55 1
		

Crossrefs

Programs

  • PARI
    x='x+O('x^11); concat(apply(p->Vecrev(p), Vec(Ser((1-x)^3/((x-1)^4 - t*x*(x+1)^2))))) \\ Gheorghe Coserea, Apr 20 2017

Formula

T(n,1) = A006325(n+1).
A(x;t) = Sum_{n>=0} P_n(t)*x^n = (1-x)^3/((x-1)^4 - t*x*(x+1)^2), where P_n(t) = Sum_{k=0..n} T(n,k)*t^k. - Gheorghe Coserea, Apr 20 2017
Showing 1-1 of 1 results.