cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179876 Numbers h such that h and h-1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.

Original entry on oeis.org

2, 7, 11, 23, 47, 59, 66, 70, 78, 83, 107, 130, 167, 179, 186, 195, 211, 222, 227, 238, 255, 263, 266, 310, 322, 331, 347, 359, 366, 383, 399, 418, 438, 455, 463, 467, 470, 474, 479, 483, 494, 498, 503
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Corresponding values of numbers h-1 see A179875.
Numbers h such that A175505(h) = A175505(h-1).
Numbers h such that A175506(h) = A175506(h-1).
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).

Examples

			For n=3: a(3) = 11; B(11) = A175505(11) / A175506(11) = 7, B(10) = A175505(10) / A175506(10) = 7.
		

Crossrefs

Programs

  • Maple
    antiHMeanGcd := proc(h)
            option remember;
            local a023896,a053818,k ;
            a023896 := 0 ;
            a053818 := 0 ;
            for k from 1 to h do
                    if igcd(k,h) = 1 then
                            a023896 := a023896+k ;
                            a053818 := a053818+k^2 ;
                    end if;
            end do:
            a053818/a023896 ;
    end proc:
    n := 1:
    for h from 2 do
            if antiHMeanGcd(h) = antiHMeanGcd(h-1) then
                    printf("%d %d\n",n,h) ;
                    n := n+1 ;
            end if;
    end do: # R. J. Mathar, Sep 26 2013
  • Mathematica
    hmax = 1000;
    antiHMeanGcd[h_] := antiHMeanGcd[h] = Module[{num = 0, den = 0, k}, For[k = 1, k <= h, k++, If[GCD[k, h] == 1, den += k; num += k^2]]; num/den];
    Reap[n = 1; For[h = 2, h <= hmax, h++, If[antiHMeanGcd[h] == antiHMeanGcd[h - 1], Sow[h]; n++]]][[2, 1]] (* Jean-François Alcover, Mar 23 2020, after R. J. Mathar *)