A179900 Triangle T(n,k) read by rows: coefficient of [x^k] of the polynomial p_n(x)=(5-x)*p_{n-1}(x)-p_{n-2}(x), p_0=1, p_1=5-x.
1, 5, -1, 24, -10, 1, 115, -73, 15, -1, 551, -470, 147, -20, 1, 2640, -2828, 1190, -246, 25, -1, 12649, -16310, 8631, -2400, 370, -30, 1, 60605, -91371, 58275, -20385, 4225, -519, 35, -1, 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1, 1391275
Offset: 0
Examples
1 ; # 1 5, -1; # 5-x 24, -10, 1 ; # 24-10x+x^2 115, -73, 15, -1; # 115-73x+15x^2-x^3 551, -470, 147, -20, 1; 2640, -2828, 1190, -246, 25, -1; 12649, -16310, 8631, -2400, 370, -30, 1; 60605, -91371, 58275, -20385, 4225, -519, 35, -1; 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1; 1391275, -2704755, 2313450, -1142730, 359275, -74571, 10220, -892, 45, -1;
Programs
-
Mathematica
Clear[M, T, d, a, x, a0] T[n_, m_, d_] := If[ n == m, 5, If[n == m - 1 || n == m + 1, -1, 0]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], { d, 1, 10}]] Flatten[a] MatrixForm[a]
Formula
T(n,k) = 5*T(n-1,k)-T(n-1,k-1)-T(n-2,k) starting T(0,0)=1, T(1,0)=5 and T(1,1)=-1.
T(n,0) = A004254(n+1).
Comments