cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180000 a(n) = lcm{1,2,...,n} / swinging_factorial(n) = A003418(n) / A056040(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 12, 4, 10, 10, 30, 30, 105, 7, 56, 56, 252, 252, 1260, 60, 330, 330, 1980, 396, 2574, 286, 2002, 2002, 15015, 15015, 240240, 7280, 61880, 1768, 15912, 15912, 151164, 3876, 38760, 38760, 406980, 406980, 4476780, 99484, 1144066
Offset: 0

Views

Author

Peter Luschny, Aug 17 2010

Keywords

Comments

Characterization: Let e_{p}(m) denote the exponent of the prime p in the prime factorization of m and [.] denote the Iverson bracket, then
e_{p}(a(n)) = Sum_{k>=1} [floor(n/p^k) is even].
This implies, among other things, that no prime > floor(n/2) can divide a(n). The prime exponents e_{2}(a(2n)) give Guy Steele's sequence GS(5,3) A080100.
Asymptotics: log a(n) ~ n(1 - log 2). It is conjectured that log a(n) ~ n(1 - log 2) + O(n^{1/2+eps}) for all eps > 0.
Bounds: A056040(floor(n/3)) <= a(n) <= A056040(floor(n/2)) if n >= 285.

Crossrefs

Programs

  • Maple
    a := proc(n) local A014963, k;
    A014963 := proc(n) if n < 2 then 1 else numtheory[factorset](n);
    if 1 < nops(%) then 1 else op(%) fi fi end;
    mul(A014963(k)*(k/2)^((-1)^k), k=1..n)/2^n end;
    # Also:
    A180000 := proc(n) local lcm, sf;
    lcm := ilcm(seq(i,i=1..n));
    sf := n!/iquo(n,2)!^2;
    lcm/sf end;
  • Mathematica
    a[0] = 1; a[n_] := LCM @@ Range[n] / (n! / Floor[n/2]!^2); Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Jul 23 2013 *)
  • PARI
    L=1; X(n)={ ispower(n, , &n);if(isprime(n),n,1); }
    Y(n)={ a=X(n); b=if(bitand(1,n),a,a*(n/2)^2); L=(b*L)/n; }
    A180000_list(n)={ L=1; vector(n,m,Y(m)); }  \\ for n>0
    
  • Sage
    def Exp(m,n) :
        s = 0; p = m; q = n//p
        while q > 0 :
            if is_even(q) :
                s = s + 1
            p = p * m
            q = n//p
        return s
    def A180000(n) :
        A = [1,1,1,1,2,2,3,3,12]
        if n < 9 : return A[n]
        R = []; r = isqrt(n)
        P = Primes(); p = P.first()
        while p <= n//2 :
            if p <= r : R.append(p^Exp(p,n))
            elif p <= n//3 :
                if is_even(n//p) : R.append(p)
            else : R.append(p)
            p = P.next(p)
        return mul(x for x in R)

Formula

a(n) = 2^(-n)*Product_{1<=k<=n} A014963(k)*(k/2)^((-1)^k).