A180035 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1+x)/(1-5*x-3*x^2).
1, 6, 33, 183, 1014, 5619, 31137, 172542, 956121, 5298231, 29359518, 162692283, 901539969, 4995776694, 27683503377, 153404846967, 850074744966, 4710588265731, 26103165563553, 144647592614958, 801547459765449
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 17.
- Index entries for linear recurrences with constant coefficients, signature (5, 3).
Programs
-
Magma
I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
-
Maple
with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [0,0,0,0,0,0,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
Mathematica
LinearRecurrence[{5,3},{1,6},50] (* Vincenzo Librandi, Nov 15 2011 *)
Formula
G.f.: (1+x)/(1-5*x-3*x^2).
a(n) = 5*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+A)*A^(-n-1)+(7+B)*B^(-n-1))/37 with A = (-5+sqrt(37))/6 and B = (-5-sqrt(37))/6.
a(n) = Sum_{k, 0<=k<=n} A202396(n,k)*2^k. - Philippe Deléham, Dec 21 2011
Comments