A180050 Triangle T(n,k) read by rows. n>3,k=1 T(n,k)=A002321(n-1). The rest of the table is described by the recurrence in the Excel formula.
1, 1, 1, 1, 1, 1, -1, -2, -3, 1, -1, 1, 3, -3, 1, -2, -3, -3, 2, -3, 1, -1, 2, 2, 0, 2, -3, 1, -2, -4, -3, 0, -1, 2, -3, 1, -2, 2, 3, -3, 3, -1, 2, -3, 1, -2, -4, -4, 3, -4, 2, -1, 2, -3, 1, -1, 3, 4, -1, 0, -1, 2, -1, 2, -3, 1, -2, -5, -5, 1, 1, -1, -2, 2, -1, 2, -3, 1, -2, 3, 4, -4, 3, -1, 2
Offset: 1
Examples
Table begins: 1, 1,1, 1,1,1, -1,-2,-3,1, -1,1,3,-3,1, -2,-3,-3,2,-3,1, -1,2,2,0,2,-3,1, -2,-4,-3,0,-1,2,-3,1, -2,2,3,-3,3,-1,2,-3,1, -2,-4,-4,3,-4,2,-1,2,-3,1, -1,3,4,-1,0,-1,2,-1,2,-3,1, -2,-5,-5,1,1,-1,-2,2,-1,2,-3,1, -2,3,4,-4,3,-1,2,-2,2,-1,2,-3,1, -3,-6,-5,3,-4,2,-2,1,-2,2,-1,2,-3,1,
Programs
-
Excel
Using European dot comma style: =if(row()>=column();if(row()<=3;1;if(column()=1; randbetween(-9;9);if(or(column()=2;column()=3);sum(indirect(address(row();column()-1; 4)))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4));sum(indirect(address(row()-column()+2; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4)))));0)
-
Mathematica
Contribution from Mats Granvik, Aug 11 2010: (Start) [from Wouter Meeussen, seqfan] Clear[a]; a[r_,c_]:=0 /; c>r; a[r_,c_]:=1 /; r<=3; a[r_,1]:=Sum[MoebiusMu[k],{k,0,r-1}]; a[r_,c_]:=a[r,c-1]-Sum[a[r-j,c], {j,1,c-1}]/; c<=3; a[r_,c_]:=a[r,c]=Sum[a[r-j,c-1], {j,1,c-2}]-Sum[a[r-j,c], {j,1,c-1}]; (m=Table[a[i,j],{i,14},{j,14}])//ColumnForm (End)
Formula
Contribution from Mats Granvik, Aug 11 2010: (Start)
[from Wouter Meeussen, seqfan]
a(r,c)=0 /; c>r
a(r,c)=1 /; r<=3
a(r,1)=sum(Amu(k),k=1..r)
a(r,c)=a(r,c-1)-sum(a(r-j,c), j=1..c-1)/; c<=3
a(r,c)=sum(a(r-j,c-1), j=1..c-2)-sum(a(r-j,c), j=1..c-1)
(End)
Comments