cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105350 Largest squared factorial dividing n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 36, 36, 576, 576, 518400, 518400, 518400, 518400, 25401600, 25401600, 1625702400, 1625702400, 131681894400, 131681894400, 13168189440000, 13168189440000, 1593350922240000, 1593350922240000, 229442532802560000, 229442532802560000
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2005

Keywords

Comments

a(n) = A001044(A056039(n)) = A056038(n)^2.
Whenever n > 1 is not in A056067, a(n) = A180064(n). - Andrey Zabolotskiy, Oct 19 2023

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[k = 1, Divisible[n!, k!^2], k++]; (k-1)!^2)
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 07 2018 *)

Extensions

Data and offset corrected by Jean-François Alcover, Aug 07 2018
Edited by Andrey Zabolotskiy, Oct 18 2023

A182923 a(n) = n$ / A055773(n), where n$ denotes the swinging factorial (A056040).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 2, 18, 36, 36, 12, 12, 24, 360, 90, 90, 20, 20, 4, 84, 168, 168, 28, 700, 1400, 37800, 5400, 5400, 720, 720, 90, 2970, 5940, 207900, 23100, 23100, 46200, 1801800, 180180, 180180, 17160
Offset: 0

Views

Author

Peter Luschny, Mar 05 2011

Keywords

Comments

a(n) = n$ * P(floor(n/2))/P(n), P(n) primorial number A034386.
A182922(n) / a(n) = A000142(n) / A056040(n) = A180064(n).

Crossrefs

Programs

  • Maple
    swingfact := n -> n! / iquo(n,2)!^2;
    A182923 := n -> swingfact(n) / mul(k, k=select(isprime, [$iquo(n,2)+1..n])):
  • Mathematica
    sf[n_] := n!/Floor[n/2]!^2;
    a[n_] := sf[n]/Numerator[n!/Floor[n/2]!^4];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 22 2019 *)

A349269 Triangle read by rows, T(n, k) = (n - k)! * k! / floor(k / 2)! ^ 2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 24, 6, 4, 6, 6, 120, 24, 12, 12, 6, 30, 720, 120, 48, 36, 12, 30, 20, 5040, 720, 240, 144, 36, 60, 20, 140, 40320, 5040, 1440, 720, 144, 180, 40, 140, 70, 362880, 40320, 10080, 4320, 720, 720, 120, 280, 70, 630
Offset: 0

Views

Author

Peter Luschny, Nov 13 2021

Keywords

Comments

Interpolates between the factorial numbers (A000142) and the swinging factorial numbers (A056040).
The identity T(n, 0) = T(n, n)*T(floor(n/2), 0)^2 was investigated as a basis for an efficient implementation of the computation of the factorial numbers (see link).

Examples

			[0]      1;
[1]      1,     1;
[2]      2,     1,     2;
[3]      6,     2,     2,    6;
[4]     24,     6,     4,    6,   6;
[5]    120,    24,    12,   12,   6,  30;
[6]    720,   120,    48,   36,  12,  30,  20;
[7]   5040,   720,   240,  144,  36,  60,  20, 140;
[8]  40320,  5040,  1440,  720, 144, 180,  40, 140, 70;
[9] 362880, 40320, 10080, 4320, 720, 720, 120, 280, 70, 630;
		

Crossrefs

Cf. A349270 (row sums), A193282 (central coeffs.), A000142, A056040, A180064.

Programs

  • Maple
    T := (n, k) -> (n - k)!*k! / iquo(k,2)! ^ 2:
    seq(seq(T(n, k), k = 0..n), n = 0..9);

Formula

T(n, k) divides T(n, 0) for 0 <= k <= n.
Product_{k=0..n} T(n, k) is a square.
Showing 1-3 of 3 results.