A180097 Numbers n such that sigma(n) is powerful.
1, 3, 7, 21, 22, 30, 31, 46, 51, 55, 66, 70, 71, 81, 85, 93, 94, 102, 107, 110, 115, 119, 127, 138, 142, 154, 156, 159, 165, 170, 187, 199, 210, 213, 214, 217, 230, 235, 238, 253, 255, 265, 282, 291, 310, 318, 321, 322, 330, 343, 345, 355, 357, 364, 371, 374
Offset: 1
Examples
sigma(3)=2^2, sigma(7)=2^3, sigma(21)=2^5, sigma(66)=2^4*3^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=numtheory[sigma](n); if emin(sn)>1 then L:=[op(L),n]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od; L;
-
Mathematica
sigmaPowerQ[1] = True; sigmaPowerQ[n_] := Min@FactorInteger[DivisorSigma[1, n]][[;; , 2]] > 1; Select[Range[1000], sigmaPowerQ] (* Amiram Eldar, Sep 08 2019 *)
-
PARI
isok(n) = ispowerful(sigma(n)); \\ Michel Marcus, Sep 08 2019
Extensions
a(1) and more terms from Amiram Eldar, Sep 08 2019