cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180098 Sigma(A180097(n)), sum of divisors of A180097(n), numbers n such that sigma(n) is powerful.

Original entry on oeis.org

1, 4, 8, 32, 36, 72, 32, 72, 72, 72, 144, 144, 72, 121, 108, 128, 144, 216, 108, 216, 144, 144, 128, 288, 216, 288, 392, 216, 288, 324, 216, 200, 576, 288, 324, 256, 432, 288, 432, 288, 432, 324, 576, 392, 576, 648, 432, 576, 864, 400, 576, 432, 576, 784, 432
Offset: 1

Views

Author

Walter Kehowski, Aug 10 2010

Keywords

Examples

			Sigma(3)=2^2, sigma(7)=2^3, sigma(21)=2^5, sigma(66)=2^4*3^2.
		

Crossrefs

Programs

  • Maple
    emin := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); min(L) else 0 fi end: L:=[]: for w to 1 do for n from 1 to 144 do sn:=numtheory[sigma](n); if emin(sn)>1 then L:=[op(L),n]; print(n,ifactor(n),sn,ifactor(sn)) fi; od; od; L; map(numtheory[sigma],L);
  • Mathematica
    sigmaPowerQ[1] = True; sigmaPowerQ[n_] := Min@FactorInteger[DivisorSigma[1, n]][[;; , 2]] > 1; DivisorSigma[1, #] & /@ Select[Range[400], sigmaPowerQ] (* Amiram Eldar, Sep 08 2019 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (ispowerful(s=sigma(n)), print1(s, ", ")););} \\ Michel Marcus, Sep 08 2019

Extensions

a(1) and more terms from Amiram Eldar, Sep 08 2019