A180135 Smallest k such that k*11^n is a sum of two successive primes.
5, 18, 6, 24, 6, 32, 40, 26, 20, 94, 50, 26, 10, 168, 30, 18, 196, 126, 70, 166, 30, 54, 130, 26, 50, 10, 40, 28, 20, 120, 84, 26, 228, 336, 92, 174, 24, 308, 28, 102, 216, 232, 68, 112, 192, 252, 512, 302, 110, 10, 330, 30, 138, 150, 168, 770, 70, 264, 24, 72, 180, 198
Offset: 0
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
f[n_] := Block[{k = 1, j = 11^n/2}, While[ h = k*j; PrimeQ@h || NextPrime[h, -1] + NextPrime@h != 2 h, k++ ]; k]; Array[f, 80, 0]
-
Python
from sympy import isprime, nextprime, prevprime def ok(n): if n <= 5: return n == 5 return not isprime(n//2) and n == prevprime(n//2) + nextprime(n//2) def a(n): k, pow11 = 1, 11**n while not ok(k*pow11): k += 1 return k print([a(n) for n in range(62)]) # Michael S. Branicky, May 18 2021
Comments