A180146 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: 1/(1 - 4*x - 3*x^2 + 6*x^3).
1, 4, 19, 82, 361, 1576, 6895, 30142, 131797, 576244, 2519515, 11016010, 48165121, 210591424, 920764999, 4025843542, 17602120621, 76961423116, 336496993075, 1471259517922, 6432760512217, 28125838644184, 122974079005855
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4, 3, -6).
Programs
-
Maple
with(LinearAlgebra): nmax:=22; m:=2; A[5]:=[0,1,0,1,1,1,1,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
Mathematica
Join[{a=1,b=4},Table[c=3*b+6*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
Formula
G.f.: 1/(1 - 4*x - 3*x^2 + 6*x^3).
a(n) = 4*a(n-1) + 3*a(n-2) - 6*a(n-3) with a(-2)=0, a(-1)=0, a(0)=1, a(1)=4 and a(2)=19.
a(n) = (-1/8) + (13+30*A)*A^(-n-1)/88 + (13+30*B)*B^(-n-1)/88 with A=(-3+sqrt(33))/12 and B=(-3-sqrt(33))/12.
Comments