A180162 a(n) is the smallest number N such that sigma(N) is an n-th power but not a higher power, with a(n) = 0 if no such number exists.
1, 2, 3, 7, 510, 21, 17490, 93, 217, 381, 651, 118879530, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429
Offset: 0
Keywords
Examples
a(4)=510 since 510=2*3*5*17, sigma(510)=2^4*3^4. a(11)=2*3*5*7*11*53*971=118879530 since sigma(118879530)=6^11.
Links
- Ray Chandler, Table of n, a(n) for n = 0..469
Programs
-
Maple
with(numtheory); egcd:=proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z-> z[2],L); igcd(op(L)) else 0 fi end: P:={}: SP:={}: for w to 1 do for n from 1 to 12^6 do sn:=sigma(n); esn:=egcd(sn); if not esn in P then P:=P union {esn}; SP:=SP union {[esn,n]}; printf("n=%d, esn=%d, sn=...\n",n,esn); print(ifactor(sn)); fi; od; #n od; #w P; SP;
Formula
a(n) >= A063869(n). - R. J. Mathar, Aug 20 2010
Extensions
a(11) found by Walter Kehowski and Artur Jasinski, Aug 16 2010
Edited by N. J. A. Sloane, Aug 19 2010
a(23) onwards from Ray Chandler, Aug 19 2010