cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180177 Triangle read by rows: T(n,k) is the number of compositions of n without 2's and having k parts; 1<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 3, 3, 4, 0, 1, 1, 4, 6, 4, 5, 0, 1, 1, 5, 9, 10, 5, 6, 0, 1, 1, 6, 13, 16, 15, 6, 7, 0, 1, 1, 7, 18, 26, 25, 21, 7, 8, 0, 1, 1, 8, 24, 40, 45, 36, 28, 8, 9, 0, 1, 1, 9, 31, 59, 75, 71, 49, 36, 9, 10, 0, 1, 1, 10, 39, 84, 120, 126, 105, 64, 45, 10, 11, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Aug 15 2010

Keywords

Comments

T(n,n) = 1; T(n,n-1) = 0; T(n,n-2) = n-2;
T(n,n-3) = n-3; T(n,n-4) = (n-4)(n-3)/2; T(n,n-5) = (n-5)^2.

Examples

			T(7,4)=4 because we have (4,1,1,1), (1,4,1,1), (1,1,4,1), and (1,1,1,4).
Triangle starts:
1;
0,1;
1,0,1;
1,2,0,1;
1,2,3,0,1;
1,3,3,4,0,1;
1,4,6,4,5,0,1;
		

References

  • P. Chinn and S. Heubach, Compositions of n with no occurrence of k, Congressus Numerantium, 164 (2003), pp. 33-51.
  • R.P. Grimaldi, Compositions without the summand 1, Congressus Numerantium, 152, 2001, 33-43.

Crossrefs

Cf. A097230 (same sequence with rows reversed).

Programs

  • Maple
    p:= 2: T := proc (n, k) options operator, arrow: sum((-1)^(k-j)*binomial(k, j)*binomial(n-p*k+p*j-1, j-1), j = (p*k-n)/(p-1) .. k) end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
    p := 2: g := z/(1-z)-z^p: G := t*g/(1-t*g): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form
    with(combinat): m := 2: T := proc (n, k) local ct, i: ct := 0: for i to numbcomp(n, k) do if member(m, composition(n, k)[i]) = false then ct := ct+1 else end if end do: ct end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
  • Mathematica
    p = 2; max = 14; g = z/(1-z) - z^p; G = t*g/(1-t*g); Gser = Series[G, {z, 0, max+1}]; t[n_, k_] := SeriesCoefficient[Gser, {z, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2014, after Maple *)
  • Maxima
    T(n,k):=if n<0 then 0 else if n=k then 1 else if k=0 then 0 else  T(n-1,k)+T(n-1,k-1)-T(n-2,k-1)+T(n-3,k-1); /* Vladimir Kruchinin, Sep 23 2014 */

Formula

Number of compositions of n without p's and having k parts = Sum((-1)^{k-j} *binomial(k,j) *binomial(n-pk+pj-1,j-1), j=floor((pk-n)/(p-1))..k), (n>=p+1).
For nMilan Janjic, Aug 06 2015
For a given p, the g.f. of the number of compositions without p's is G(t,z)=tg(z)/[1-tg(z)], where g(z)=z/(1-z)-z^p; here z marks sum of parts and t marks number of parts.
G.f.: [(x-x^2+x^3)/(1-x)]^k=sum{n>0, T(n,k)*x^n}, T(n,k)=T(n-1,k)+T(n-1,k-1)-T(n-2,k-1)+T(n-3,k-1). - Vladimir Kruchinin, Sep 29 2014