cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180190 Triangle read by rows: T(n,k) is the number of permutations p of [n] for which k is the smallest among the positive differences p(i+1) - p(i); k=0 for the reversal of the identity permutation (0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 13, 6, 4, 1, 67, 30, 14, 8, 1, 411, 178, 80, 34, 16, 1, 2921, 1236, 530, 234, 86, 32, 1, 23633, 9828, 4122, 1744, 702, 226, 64, 1, 214551, 88028, 36320, 14990, 6094, 2154, 614, 128, 1, 2160343, 876852, 357332, 145242, 58468, 21842, 6750, 1714, 256
Offset: 1

Views

Author

Emeric Deutsch, Sep 07 2010

Keywords

Comments

Terms obtained by counting with a time-consuming Maple program.
Sum of entries in row n = n! = A000142(n).
T(n,1) = A180191(n).

Examples

			T(4,2) = 6 because we have 1324, 4132, 2413, 4213, 2431, and 3241.
Triangle starts:
  1;
  1,  1;
  1,  3,  2;
  1, 13,  6,  4;
  1, 67, 30, 14,  8;
  ...
		

Crossrefs

Programs

  • Maple
    with(combinat): minasc := proc (p) local j, b: for j to nops(p)-1 do if 0 < p[j+1]-p[j] then b[j] := p[j+1]-p[j] else b[j] := infinity end if end do: if min(seq(b[j], j = 1 .. nops(p)-1)) = infinity then 0 else min(seq(b[j], j = 1 .. nops(p)-1)) end if end proc; for n to 10 do P := permute(n): f[n] := sort(add(t^minasc(P[j]), j = 1 .. factorial(n))) end do: for n to 10 do seq(coeff(f[n], t, i), i = 0 .. n-1) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(s, l, m) option remember; `if`(s={}, x^`if`(m=infinity, 0, m),
          add(b(s minus {j}, j, `if`(j (p-> seq(coeff(p, x, i), i=0..n-1))(b({$1..n}, infinity$2)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Feb 21 2019
  • Mathematica
    b[s_List, l_, m_] := b[s, l, m] = If[s == {}, x^If[m == Infinity, 0, m], Sum[b[s ~Complement~ {j}, j, If[j < l, m, Min[m, j - l]]], {j, s}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n - 1}]][b[ Range[n], Infinity, Infinity]];
    T /@ Range[10] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)

Formula

Sum_{k=0..n-1} k * T(n,k) = A018927(n). - Alois P. Heinz, Feb 21 2019