A180194 Triangle read by rows: T(n,k) is the number of permutations of [n] having k blocks of even length.
1, 1, 1, 1, 4, 2, 13, 10, 1, 63, 48, 9, 356, 293, 68, 3, 2403, 2036, 557, 44, 18655, 16213, 4902, 539, 11, 163988, 145068, 47203, 6356, 265, 1608667, 1442858, 495710, 76833, 4679, 53, 17415725, 15792362, 5659377, 971992, 75490, 1854, 206202408
Offset: 0
Examples
T(3,1)=2 because we have (23)1 and 3(12) (the blocks of even length are shown between parentheses). Triangle starts: 1; 1; 1,1; 4,2; 13,10,1; 63,48,9; 356,293,68,3;
Links
- A. N. Myers, Counting permutations by their rigid patterns, J. Combin. Theory, Series A, Vol. 99, No. 2 (2002), pp. 345-357.
Programs
-
Maple
d[ -1] := 0: d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if `mod`(n, 2) = 0 then sum(binomial(k+2*i, k)*binomial((1/2)*n+i-1, k+2*i-1)*(d[k+2*i]+d[k+2*i-1]), i = 0 .. (1/2)*n-k) else sum(binomial(k+2*i+1, k)*binomial((1/2)*n+i-1/2, k+2*i)*(d[k+2*i+1]+d[k+2*i]), i = 0 .. (1/2)*n-1/2-k) end if end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
Formula
T(n,k) = Sum(binomial(k+2i,k)*binomial(n/2+i-1,k+2i-1)*[d(k+2i)+d(k+2i-1)], i=0..n/2-k) if n is even,
T(n,k) = Sum(binomial(k+2i+1,k)*binomial(n/2-1/2+i,k+2i)*[d(k+2i+1)+d(k+2i)], i=0..n/2-1/2-k) if n is odd,
Here d(i)=A000166(i) are the derangement numbers.
Sum of entries in row n = n! = A000142(n).
T(2n+1,n) = d(n+2).
Sum(k*T(n,k), k>=0) = A180195(n-1).
Comments